Discontinuity-Aware 2D Neural Fields

Yash Belhe - University of California San Diego Michael Gharbi, Matthew Fisher, Iliyan Georgiev - Adobe Ravi Ramamoorthi, Tzu-Mao Li - University of California San Diego

Path-tracing can produce arbitrarily high resolution images

Let's re-render a 100x close-up here

100x zoom — image has discontinuities!

Discontinuity locations are analytically known

Most image formats do not use discontinuity information

Our contribution

Hybrid neural-mesh-based representation for images

- Is optimizable
- Can be **rendered** at any zoom scale in real time
- Can preserve discontinuities that are given

Common image representations

Raster images can represent complex signals

... but details are limited by resolution

Neural fields can compactly encode giga images!

InstantNGP: Muller 22

Martel 21: ACORN: Adaptive Coordinate Networks for Neural Representation Maller 22: Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

... but they blur discontinuities

InstantNGP: Muller 22

Interpolated Feature

Vector graphics analytically store discontinuity locations

WZ

_00000

... but they have simplistic shading

Our goal

Our goal: encode a target image

Target image

Our goal: encode a target image given its discontinuitiy locations

Discontinuity locations

Curved discontinuities

Discontinuity locations

Discontinuity locations

Triangulation

Hu 19: TriWild: Robust Triangulation with Curve Constraints

Discontinuity locations

Hu 19: TriWild: Robust Triangulation with Curve Constraints

Our feature field is aligned with discontinuities

Discontinuity locations

Hu 19: TriWild: Robust Triangulation with Curve Constraints

Our rendering pipeline

Mapping queries to colors

Feature field

Discontinuity-aware feature interpolation

Discontinuous vertex

Different features above and below each discontinuity

Evaluating vertex feature for a query point

Closest clockwise feature

Closest counter-clockwise feature

Vertex feature = radially interpolate closest features

Putting it all together

Query point

Find triangle that contains query point

Zooming in to query point

Directly retrieve feature for continuous vertex

Retrieve features for discontinuous vertices

Find closest features

Radially interpolate closest features

Retrieve features for discontinuous vertices

Find closest features

Radially interpolate nearest features

Barycentrically interpolate three vertex features

Barycentrically interpolate three vertex features

Decode interpolated features using MLP

Interpolated feature

Decode interpolated features using MLP

Interpolated feature

MLP

Decode interpolated features using MLP

Interpolated feature

MLP

Feature field

Discontinuity-aware feature interpolation

Performance

60 FPS inference @1080p

- 60-120 FPS inference on our examples
- Training is typically < 2 mins

All numbers are reported on an RTX 3090Ti

Results
Application: path-traced images

Application: path-traced image

Application: path-traced image

Ours (1× zoom)

ReLU fields (100×)

InstantNGP (100×)

Application: diffusion curve images

We start with some curves

Colors on both sides of curves

Diffuse colors from curves

Diffusion curve image

Monte Carlo estimate

Sawhney 20: Monte Carlo Geometry Processing

Monte Carlo data

Ours

Sawhney 20: Monte Carlo Geometry Processing

Monte Carlo data

Ours

InstantNGP

Sawhney 20: Monte Carlo Geometry Processing

Our result: curved discontinuities

Our result: open edges

Application: physics-informed diffusion curve

Application: physics informed diffusion curves

Application: physics informed diffusion curves

Application: physics informed diffusion curves

Multi-layer perceptron

PSNR: 12.09 dB 90

Application: store FEM solutions

Application: store solution to Helmholtz equation

Application: store solution to wave equation

Limitations

- We require discontinuity locations
- Different data structure needed for high frequency continuous variation

Converting an image to pixels requires choosing a resolution and throwing away information beyond that resolution... When you really think about it, representing an image as pixels is really a bad compression technique... we need better image atoms... Jim Blinn's Corner Notation Notation Notation

yashbelhe.github.io

