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Standard deviation of derivative estimators: BRDF Importance Sampling (top le� diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bo�om right diagonal). Numbers indicate improvement in gradient estimation, higher is be�er. 

Our Pos 1.96x Our Pos 58.57x Our Prod 1.56x Our Prod 3.61x Our Mix 3.91x Our Mix 4.72x

BRDF 1x BRDF 1x BRDF 1x BRDF 1x BRDF 1x BRDF 1x

Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red). 
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Fig. 1. We propose new importance sampling techniques for sampling derivatives of BRDFs , and they achieve significant variance reduction in the estimated
derivatives. Our techniques work better because they correctly deal with real-valued BRDF derivatives, for which BRDF importance sampling from forward
rendering is not well suited. Our techniques are general and apply to a wide variety of BRDF derivatives, which was not possible by previous work in
differentiable rendering [Zeltner et al. 2021; Zhang et al. 2021a]. 3D models courtesy of Turbosquid users id_inc (teapot), Evilordus (lion), Adrian Kulawik
(hydrant), 3d_molier International (cactus), cgaustria (fish vase).

We propose a set of techniques to efficiently importance sample the deriva-
tives of a wide range of BRDF models. In differentiable rendering, BRDFs are
replaced by their differential BRDF counterparts which are real-valued and
can have negative values. This leads to a new source of variance arising from
their change in sign. Real-valued functions cannot be perfectly importance
sampled by a positive-valued PDF, and the direct application of BRDF sam-
pling leads to high variance. Previous attempts at antithetic sampling only
addressed the derivative with the roughness parameter of isotropic micro-
facet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic
microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among
other analytic BRDFs.

Our method first decomposes the real-valued differential BRDF into a
sum of single-signed functions, eliminating variance from a change in sign.
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Next, we importance sample each of the resulting single-signed functions
separately. The first decomposition, positivization, partitions the real-valued
function based on its sign, and is effective at variance reduction when appli-
cable. However, it requires analytic knowledge of the roots of the differential
BRDF, and for it to be analytically integrable too. Our key insight is that the
single-signed functions can have overlapping support, which significantly
broadens the ways we can decompose a real-valued function. Our product
and mixture decompositions exploit this property, and they allow us to
support several BRDF derivatives that positivization could not handle. For
a wide variety of BRDF derivatives, our method significantly reduces the
variance (up to 58x in some cases) at equal computation cost and enables
better recovery of spatially varying textures through gradient-descent-based
inverse rendering.
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1 INTRODUCTION
BRDF importance sampling is an essential variance reduction tech-
nique for Monte Carlo forward rendering. However, there is no
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simple counterpart for differentiable rendering. Taking the deriv-
ative of a BRDF with respect to one of its parameters transforms
it into a real-valued differential BRDF. The differential BRDF can
have a very different shape from the BRDF, and can also take neg-
ative values. Previous attempts at tackling this problem [Zeltner
et al. 2021] are limited to the roughness derivatives of isotropic
GGX (Trowbridge-Reitz) and Beckmann BRDFs, and cannot han-
dle even their anisotropic counterparts. Another method [Zhang
et al. 2021a] was developed primarily for odd functions with sym-
metric positive and negative lobes, and can produce substantially
higher variance when the derivative is close to an even function.
We propose effective importance sampling of derivatives of not only
anisotropic GGX and Beckmann BRDFs, but also a wide variety of
other analytic BRDF models like Ashikhmin-Shirley, Oren-Nayar,
Hanrahan-Krueger, Mixture BRDFs, and ABC models. Fig. 1 demon-
strates the benefits of our method on several BRDFs compared to
BRDF sampling.

Importance sampling a real-valued function leads to unique chal-
lenges. Its variance has two sources, a) its sign, and b) its shape.
Our idea is to decompose the function into a sum of single-signed
functions, which we call single-signed decompositions. A single-
signed function is either positive everywhere or negative every-
where in its domain. Single-signed functions, by definition, have no
sign variance. Importance sampling these functions eliminates their
shape variance.
A classical strategy, positivization [Owen and Zhou 2000], is a

special case of our single-signed decomposition. It has positive and
negative parts with non-overlapping support, which in turn requires
a) analytic knowledge of the roots and b) analytic integrability of the
BRDF derivative up to the roots, which is possible only for certain
BRDF derivatives. To sidestep these issues due to a partition of the
domain, we introduce the product and mixture decompositions for
which we allow the positive and negative parts to overlap. In fact, we
ensure that both the positive and the negative parts have support
over the entire hemisphere. This enables analytic integrability and
significantly expands upon the set of BRDF derivatives we can
handle. Our main contributions are three single-signed decompositions
and the corresponding importance sampling PDFs of a large set of BRDF
derivatives, see Table 1.

Positivization. First, we introduce a simple decomposition called
positivization (Sec. 4.2), which partitions a real-valued function about
its roots into a positive and a negative function.We show that Zeltner
et al.’s [2021] antithetic sampling is a special case of positivization,
and positivization provides an explanation of the efficiency of
their approach. When applicable, positivization leads to significant
variance reduction. For example, it can be applied for sampling
the isotropic GGX, Beckmann and Hanrahan-Krueger BRDF deriva-
tives. However, others like anisotropic GGX, Beckmann, Ashikhmin-
Shirley (Sec. 4.2.2) are not analytically integrable up to their roots,
and the derivatives with mixture weights (Sec. 6) do not have ana-
lytic roots. Positivization cannot handle these derivatives. Zeltner
et al.’s antithetic sampling inherits these limitations too.

Product Decomposition. Second, we propose a novel product de-
composition (Sec. 5). Our key observation is that after differentiation,

many BRDF derivatives can be decomposed into single-signed func-
tions by separating the terms that result from the derivative product
rule. Product decomposition does not require knowledge of the roots
for the decomposition and only requires the resulting single-signed
functions to be analytically integrable. Product decomposition can
importance sample the derivatives of anisotropic GGX, Beckmann,
Ashikhmin-Shirley, and more.

Mixture Decomposition. Finally, we introduce mixture decompo-
sition (Sec. 6). Derivatives of BRDFs with linear combination coeffi-
cients, e.g., mixture weights of a layered BRDF, result in real-valued
functions whose roots cannot be found analytically in most cases.
Our mixture decomposition exploits the fact that this derivative is
the difference between two positive-valued terms. Separating them
results in a single-signed decomposition, and the two terms can then
be importance sampled separately. Mixture decomposition handles
the derivatives of Oren-Nayar and mixture weights of Uber BRDFs
such as the Disney BRDF or Autodesk Standard Surface.
It is likely that several other BRDF derivatives not surveyed in

this paper can also be dealt with by one of our three decompositions,
and we provide a recipe for handling them in Sec. 7. We provide a
library of importance sampling PDFs for the derivatives of all the
BRDF models discussed in this work in Table 1.

2 RELATED WORK
Our work connects two areas in rendering research, differentiable
rendering and BRDF sampling.

2.1 Differentiable Rendering
Derivatives in rendering. Computing derivatives or gradients of

light transport has a long history. Earlier work focused on acceler-
ating light transport using derivatives [Arvo 1994; Ramamoorthi
et al. 2007; Ward and Heckbert 1992]. Approximate differentiable
renderers [de La Gorce et al. 2011; Kato et al. 2018; Laine et al. 2020;
Liu et al. 2020; Loper and Black 2014] have been used for many
computer vision tasks, and light transport derivatives have been
used for recovering scattering coefficients [Gkioulekas et al. 2013;
Khungurn et al. 2015].

Background on differentiable rendering. Much of the current in-
terest in Monte Carlo differentiable rendering was started by Li et
al. [2018], who introduced an edge sampling approach to correctly
handle discontinuities in both primary and secondary visibility.
As shown by them and subsequent work [Zhang et al. 2019], the
derivative of the rendering equation is made up of an interior inte-
gral which handles continuous function variation, and a boundary
integral which encapsulates discontinuities.

Follow up work [Bangaru et al. 2020; Loubet et al. 2019; Xu et al.
2023a; Yan et al. 2022; Yu et al. 2022; Zhang et al. 2020, 2023] focused
on accurately computing the boundary integral. Some other recent
work focused on reducing memory requirements [Nimier-David
et al. 2020; Vicini et al. 2021], and building automatic differentiation
systems and compilers [Bangaru et al. 2023; Jakob et al. 2022; Nimier-
David et al. 2019]. Efforts have been made to handle different light
transport phenomena [Wu et al. 2021; Yi et al. 2021; Zhang et al. 2019,
2021b]. Some recent work has investigated the possibility to leverage
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Table 1. List of Supported Material Derivatives. The first column lists
the name of the BRDF, and the second column lists the corresponding
parameter whose derivative we can importance sample. The third column
lists the type of single-signed decomposition applied (Positivization, Product
Decomposition, Mixture Decomposition). The fourth column lists the section
number in the Appendix (with links) with the relevant sampling PDFs. Please
refer to the original papers for definitions of the parameters.

Material Param. SSD PDFs

Isotropic GGX [1975; 2007] 𝛼 Pos. A.1.1
Isotropic Beckmann [1987] 𝛼 Pos. A.1.2
Blinn Phong (Minnaert) [1977; 1941] 𝑛 Pos. A.1.3
Henyey-Greenstein (Hanrahan-Krueger)
[1993; 1941]

𝑔 Pos. A.1.4

Anisotropic GGX [1975; 2007] 𝛼𝑥 , 𝛼𝑦 Prod. A.2.1
Anisotropic Beckmann (Ward) [1987; 1992] 𝛼𝑥 , 𝛼𝑦 Prod. A.2.2
Ashikhmin-Shirley [2001] 𝑛𝑢 , 𝑛𝑣 Prod. A.2.3
Isotropic ABC [Löw et al. 2012] 𝐵,𝐶 Prod. A.2.4
Isotropic Hemi-EPD [2009] 𝜅 Prod. A.2.5
Burley Diffuse Reflectance [2015] 𝑑 Prod. A.2.6
Mixture Model (e.g., Autodesk, Disney BRDF)
[2012; 2019]

𝑤 Mix. A.3.1

Oren-Nayar [1994] 𝜎 Mix. A.3.2
Microcylinder [2013] 𝑘𝑑 Mix. A.3.3

coherency between gradient descent iterations in inverse rendering
to reduce variance [Chang et al. 2023; Nicolet et al. 2023; Wang et al.
2023]. Much of the recent inverse rendering work has started to
incorporate differentiable rendering components [Azinović et al.
2019; Che et al. 2020; Deschaintre et al. 2018; Luan et al. 2021; Nimier-
David et al. 2021, 2022; Sun et al. 2023; Wu et al. 2023]. These efforts
are complementary to our work.
Zeltner et al. [2021] show that directly importance sampling a

BRDF’s derivative leads to a detached derivativewith only an interior
term, and no boundary term. They also show that reparameteriza-
tion before differentiation leads to a different attached derivative
with not only an interior term but an additional boundary term too.
The boundary term requires careful handling for unbiased estimates
and extra auxiliary rays at each shading point to estimate it too (4
to 64 extra rays as per Bangaru et al. [2020]). As a result, attached
estimators are not suitable for the low sample budget within which
we aim to operate. Our estimators fall under the detached derivative
regime, which does not require these extra auxiliary rays, which
makes them suitable for low sample budget derivative estimation.

2.2 BRDFs and Importance Sampling
Our work supports importance sampling the derivatives of a wide
variety of analytic BRDF models. Table 1 shows a comprehensive list
of the supported BRDF derivatives and their importance sampling PDFs.
The code for the sampling routines is included in supplementary
material.

Importance Sampling BRDFs. Importance sampling according to
the BRDF [Pharr et al. 2016] is a fundamental variance reduction
technique used in Monte Carlo forward rendering. While essen-
tial, it was initially limited to Phong-like BRDFs [Lafortune et al.

1997; Phong 1975] and Ward [1992]. Lawrence et al. [2004] intro-
duced a non-negative matrix based factorization to efficiently fit
analytic and measured BRDFs for sampling. Walter et al. [2007] in-
troduced the GGX BRDF [Trowbridge and Reitz 1975] along with its
importance sampling routines. Follow-up works have correctly ac-
counted for the shadowing and masking terms to sample microfacet
BRDFs [Heitz 2017, 2018; Heitz and d’Eon 2014; Jakob 2014].

Data-Driven BRDFs. Apart from analytic BRDFs, data-driven mea-
sured BRDFs [Dupuy and Jakob 2018; Matusik et al. 2003] and Neural
BRDFs [Fan et al. 2022; Kuznetsov et al. 2021, 2022; Sztrajman et al.
2021; Xu et al. 2023b] are another common class of BRDF models
that can model a wide variety of materials. However, both these
Neural BRDFs and non-analytic measured BRDFs have a very large
number of parameters, and it is unclear which parameters one might
want to differentiate and importance sample with respect to. Hence,
we do not consider either of these classes of BRDFs in our work and
focus instead on common analytic BRDF models.

3 BACKGROUND
For the sake of simplicity, we begin our discussion by focusing on
the direct lighting setting, and extend it to indirect lighting in Sec. 9.
The reflected radiance 𝐿𝑟 , at a shading point 𝒚, in the direction 𝝎𝑜 ,
is given by the reflection equation [Cohen and Wallace 1993],

𝐿𝑟 (𝒚,𝝎𝑜 ;𝛼) =
∫

𝑓 (𝒚,𝝎𝑖 ,𝝎𝑜 ;𝛼)𝐿𝑖 (𝒚,𝝎𝑖 )d𝝎𝑖 . (1)

Here, 𝑓 is the cosine-weighted BRDF at 𝒚, and 𝛼 is a scalar BRDF
parameter that controls 𝑓 . In practice, 𝛼 is the vector of all BRDF
parameters in a given scene. However, for ease of exposition, we
assume 𝛼 is scalar-valued, with the results for the other parameters
following similarly. For example, 𝛼 could be the roughness of an
isotropic GGX BRDF. Since we are dealing with only direct lighting,
the incident radiance 𝐿𝑖 does not depend upon 𝛼 . Differentiating
the expression for the reflected radiance with 𝛼 , we get

𝜕𝛼𝐿𝑟 (𝒚,𝝎𝑜 ;𝛼) =
∫

𝜕𝛼 𝑓 (𝒚,𝝎𝑖 ,𝝎𝑜 ;𝛼)𝐿𝑖 (𝒚,𝝎𝑖 )d𝝎𝑖 . (2)

Since the parameter 𝛼 does not affect discontinuities, we do not
have an additional boundary integral [Li et al. 2018].

In forward rendering, BRDF sampling aims to minimize the vari-
ance of the BRDF 𝑓 in the reflection equation, Eqn. (1). Similarly,
our goal is to minimize the variance of the differential BRDF 𝜕𝛼 𝑓 in
differentiable rendering, i.e the variance of the estimator for

𝐼 (𝝎𝑜 ;𝛼) =
∫

𝜕𝛼 𝑓 (𝝎𝑖 ,𝝎𝑜 ;𝛼)d𝝎𝑖 . (3)

We drop the spatial coordinate 𝒚, without loss of generality, for
simplicity. We deal with the incident radiance 𝐿𝑖 using light source
sampling. The estimators for 𝜕𝛼 𝑓 and 𝐿𝑖 can be combined using
Multiple Importance Sampling [Veach and Guibas 1995]. We finally
want to compute 𝜕𝛼𝐿𝑟 so the final estimator must always include
multiplication by 𝐿𝑖 . All following integrals in the paper omit 𝐿𝑖 to
stress that we only focus on 𝜕𝛼 𝑓 .
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3.1 Previous Work on Variance Reduction for
Differentiable Rendering

3.1.1 Detached & Antithetic Sampling. Zeltner et al. [2021] noticed
that standard BRDF sampling using a PDF 𝑝 ∝ 𝑓 for the differen-
tial BRDF 𝜕𝛼 𝑓 leads to high variance since 𝜕𝛼 𝑓 and 𝑓 can be very
different functions. They instead construct a PDF 𝑝 ∝ |𝜕𝛼 𝑓 |, called
the differential detached PDF, which matches 𝜕𝛼 𝑓 in shape. This
eliminates variance from the shape of 𝜕𝛼 𝑓 , i.e., the sample weights
𝜕𝛼 𝑓 /𝑝 are constant in magnitude. There is, however, additional
sign variance resulting from the mismatch in the sign between the
positive-valued 𝑝 and the real-valued integrand 𝜕𝛼 𝑓 resulting in
sample weights 𝜕𝛼 𝑓 /𝑝 that change sign.

To deal with sign variance, Zeltner et al. [2021] applied antithetic
sampling. (3) We show that Zeltner et al.’s method is a special case
of another technique called positivization [Owen and Zhou 2000].

We show in Sec. 4.2 and Appendix B that positivization provides
a theoretical grounding of antithetic sampling: the effectiveness
mainly comes from the stratification (separating the real-valued
function into a positive and a negative function). The major draw-
back of antithetic sampling is its inapplicability to several BRDF deriva-
tives, due to the lack of closed forms of root finding and integration,
which we discuss in Sec. 4.2.2.

Positivization has also been applied by concurrent work in differ-
entiable rendering to the target function 𝑞 in resampled importance
sampling (RIS) [Talbot et al. 2005] by Chang et al. [2023] (see Eqn.
11 in their paper). Our work is orthogonal to their method: They use
BRDF importance sampling as their candidate distribution 𝑝 . The
variance of RIS is a linear combination of Var(𝑓 /𝑝) and Var(𝑓 /𝑞)
(see Eqn 4.2 in Talbot et al. [2005]’s work); positivized RIS reduces
the variance of the second term by positivizing the target function 𝑞
into 𝑞+, 𝑞− . Our method of positivizing the differential BRDF (using
𝑝+, 𝑝− instead of 𝑝) reduces the variance of the first term.

3.1.2 Antithetic Sampling of Odd Derivatives. Zhang et al. [2021a]
introduce another antithetic-sampling-based method to deal with
the derivative of the GGX Normal Distribution Function, 𝐷 (𝝎ℎ)
with the half vector 𝝎ℎ . They exploit the fact that the derivative
𝜕𝝎ℎ

𝐷 (𝝎ℎ) is odd about the local shading normal, i.e

𝜕𝝎ℎ
𝐷 ( [𝜔ℎ,𝑥 , 𝜔ℎ,𝑦, 𝜔ℎ,𝑧]) = −𝜕𝝎ℎ

𝐷 ( [−𝜔ℎ,𝑥 ,−𝜔ℎ,𝑦, 𝜔ℎ,𝑧]). (4)

Their estimator for Eqn. (3) requires two antithetic samples 𝜔𝑖,1 and
𝜔𝑖,2, and is given by

𝐼 ≈
𝜕𝛼 𝑓 (𝜔𝑖,1) + 𝜕𝛼 𝑓 (𝜔𝑖,2)

𝑝 (𝜔𝑖,1) + 𝑝 (𝜔𝑖,2)
. (5)

Here, and going forward, we drop 𝝎𝑜 and 𝛼 from the function
arguments of 𝐼 (𝝎𝑜 , 𝛼) and 𝑓 (𝝎𝑖 ,𝝎𝑜 , 𝛼) for brevity. This method
works well for the odd derivative with 𝝎ℎ . However, for non-odd
derivatives, there are no variance reduction guarantees. Further-
more, several BRDF derivatives are even, e.g., roughness of GGX,
Beckmann, and Zhang et al.’s method increases variance in these
cases.

Additionally, Eqn. (5) is not in the standard importance sampling
form of 𝜕𝛼 𝑓 /𝑝 due to the presence of a sum in the numerator and
denominator. Hence, it is unclear how to use it in conjunction with
multiple importance sampling.

(a) Original Function

f (x)

(b) Derivative, PDF & Sampling Weights

∂µf (x)

p(x)

∂µf (x)/p(x)

(c) Positivization: Negative Derivative,
PDF & Sampling Weights

∂µf−(x)

p−(x)

∂µf−(x)/p−(x)

(d) Positivization: Positive Derivative,
PDF & Sampling Weights

∂µf+(x)

p+(x)

∂µf+(x)/p+(x)

(a) Original Function (b) Derivative, PDF & Sampling Weights

(c) Positivization: Negative Derivative,
PDF & Sampling Weights

(d) Positivization: Positive Derivative,
PDF & Sampling Weights

Fig. 2. Sign Variance and Positivization. Differentiating the positive orig-
inal function (a, yellow) results in a real-valued derivative (b, yellow). (b)
Although the derivative (b, yellow) 𝜕𝜇 𝑓 and the PDF (b, blue) 𝑝 match in
shape, i.e., 𝑝 ∝ |𝜕𝜇 𝑓 | , the sample weights 𝜕𝜇 𝑓/𝑝 (b, red) are non-constant
due to a mismatch between their signs, causing sign variance. Positiviza-
tion [Owen and Zhou 2000] splits the derivative into its positive and negative
(c, d, yellow) parts. Since both parts are either purely non-negative or non-
positive, they can be perfectly importance sampled by constructing PDFs 𝑝+
and 𝑝− (c, d, blue). The resulting sampling weights (c, d, red), are constant
and the corresponding estimator has zero variance.

4 SINGLE-SIGNED DECOMPOSITIONS
In this section, we describe the concept of sign variance in real-
valued integrals, and then show how our first decomposition, posi-
tivization, can handle this source of variance for some BRDF deriva-
tives. Positivization requires a) analytic knowledge of roots and
b) analytic integrability of the BRDF derivative, which limits its
applicability. In Sec. 5, we present a novel product decomposition that
exploits the single-signed nature of the terms resulting from the
product rule for derivatives, for the correct handling of sign variance.
It significantly expands the set of BRDF derivatives we can handle.
In Sec. 6, we present a novel mixture decomposition that exploits the
fact that derivatives with mixture weights are a difference of two
positive functions, to decompose them into single-signed functions,
allowing us to importance sample even more BRDF derivatives. Fi-
nally, we describe a general recipe to handle other BRDF derivatives
not surveyed in this paper in Sec. 7.

4.1 Sign Variance
We introduce sign variance through the following representative
1D example, showing the real-valued derivative 𝜕𝜇 𝑓 of a normal
distribution 𝑓 (𝑥 ; 𝜇, 𝜎) with its mean 𝜇, as shown in Fig. 2 (a,b):

𝐼 =

∫ ∞

−∞
𝜕𝜇 𝑓 (𝑥 ; 𝜇, 𝜎)d𝑥 =

∫ ∞

−∞

1
√
2𝜋𝜎3

(𝑥 − 𝜇)𝑒−
1
2 (

𝑥−𝜇
𝜎

)2d𝑥 . (6)

For 𝑥 < 𝜇, the integrand 𝜕𝜇 𝑓 is negative, and for 𝑥 > 𝜇, it is positive.
The importance sampling strategy using a single PDF 𝑝 ∝ |𝜕𝜇 𝑓 | no
longer has zero variance [Owen and Zhou 2000]. This is due to the
sign variance, i.e., the positive-valued PDF 𝑝 cannot match the sign
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of the real-valued integrand 𝜕𝜇 𝑓 over the entire domain, leading to
non-constant sample weights, see Fig. 2 (b).

4.2 Positivization
It is possible to construct an estimator for any real-valued integrand
𝜕𝛼 𝑓 , e.g., Eqn. (6), which has zero variance. By partitioning 𝜕𝛼 𝑓 into
its positive 𝜕𝛼 𝑓+ and negative 𝜕𝛼 𝑓− parts,

𝜕𝛼 𝑓+ (𝑥) = max (𝜕𝛼 𝑓 (𝑥), 0) , 𝜕𝛼 𝑓− (𝑥) = min (𝜕𝛼 𝑓 (𝑥), 0)
𝜕𝛼 𝑓 (𝑥) = 𝜕𝛼 𝑓+ (𝑥) + 𝜕𝛼 𝑓− (𝑥),

(7)

we are left with two functions that are single-signed by definition.
They can be perfectly importance sampled if we can construct the
following two PDFs, 𝑝− (𝑥) ∝ 𝜕𝛼 𝑓− (𝑥) and 𝑝+ (𝑥) ∝ 𝜕𝛼 𝑓+ (𝑥), see
Fig. 2(c,d). The resulting estimator is

𝐼 =

∫
𝜕𝛼 𝑓 (𝑥)d𝑥 =

∫
𝜕𝛼 𝑓+ (𝑥)d𝑥 +

∫
𝜕𝛼 𝑓− (𝑥)d𝑥

≈ 𝜕𝛼 𝑓+ (𝑋+)
𝑝+ (𝑋+)

+ 𝜕𝛼 𝑓− (𝑋−)
𝑝− (𝑋−)

,

(8)

where 𝑋+ ∼ 𝑝+ and 𝑋− ∼ 𝑝− .
This technique is called positivization [Owen and Zhou 2000],

and we apply it to importance sampling BRDF derivatives. The zero-
variance claim is only with regard to the variance arising from the
differential BRDF 𝜕𝛼 𝑓 . The derivative of the reflection equation, see
Eqn. (2), is a product of the differential BRDF and the lighting, and
as a result, it will still have variance from the lighting.

In Appendix B, we show how Zeltner et al.’s approach can be un-
derstood as a special case of positivization with correlated samples
𝑋+, 𝑋− ; for positivization, these samples are independent. Through
an empirical study, we have found that the majority of the variance
reduction of antithetic sampling comes from the implicit splitting
of 𝜕𝛼 𝑓 into positive and negative lobes (𝜕𝛼 𝑓+ and 𝜕𝛼 𝑓−), instead of
the negative correlation between samples, see Fig. 3.

4.2.1 Positivization of Isotropic GGX. Positivization, and by exten-
sion antithetic sampling, is very effective at reducing variance for
BRDF derivatives when 𝑝+ and 𝑝− can be constructed. For this, 𝑝+
needs to be analytically integrated over the region where 𝜕𝛼 𝑓 > 0
to obtain the necessary PDF and CDF required for sampling, see
Fig. 4 for the overall pipeline to construct them. This step faces two
challenges a) the roots, which define the region where 𝜕𝛼 𝑓 > 0,
do not have a closed-form expression for some BRDF derivatives,
and b) 𝜕𝛼 𝑓 is not analytically integrable over the region where it is
positive, for others. A similar argument follows for 𝑝− too.

Some BRDF derivatives, like isotropic microfacet GGX and Beck-
mann can be handled by positivization. These microfacet models
are given by the following equation,

𝑓 (𝝎𝑖 ,𝝎𝑜 ) =
𝐹 (𝝎𝑖 ,𝝎𝑜 , 𝜂)𝐺 (𝝎𝑖 ,𝝎𝑜 )𝐷 (𝝎ℎ)

4 cos𝜃𝑜
, (9)

where 𝐹 is the Fresnel term, 𝐺 is the shadowing and masking term,
and 𝐷 is the normal distribution function for the specific BRDF.
The unit vector 𝝎ℎ is halfway between 𝝎𝑖 and 𝝎𝑜 , and its spherical
coordinates are 𝜃ℎ, 𝜙ℎ .
The derivative of the isotropic GGX BRDF with its roughness 𝛼

has two components, 𝜕𝛼𝐷 (𝝎ℎ) and 𝜕𝛼𝐺 (𝝎𝑖 ,𝝎𝑜 ). However, as noted

(a) BRDF Sampling (b) Zhang et al. (c) Zeltner et al. (d) Our Positivization

Fig. 3. Comparison between BRDF Sampling, Zeltner et al. [2021], Zhang
et al. [2021a], and our Positivization, for the derivative of an isotropic GGX
BRDF with its roughness 𝛼 . The object in the scene is a fire hydrant lit by
two area lights. BRDF sampling is unable to correctly handle the sign or
shape variance of the differential GGX BRDF and has high variance. Zhang
et al.’s method is unsuitable for even derivatives like roughness and produces
a high variance estimator as well. Zeltner et al.’s method is a special case
of positivization and both of them have very similar variance reduction
properties. We have found that positivization and Zeltner et al.’s method
have similar performance across several scenes. Hydrant model courtesy of
Turbosquid user Adrian Kulawik.

= FindRoots(            )

+

Analytically Solve for Roots To
Compute Domain of Integration

Integrate Function inside Domain
to Compute Normalization Constant

Steps at which Positivization can fail

1.

2.

= FindRoots(            )

Fig. 4. Importance Sampling PDF construction for Positivization. Pos-
itivization splits 𝑓 about its roots into single-signed 𝑓+, 𝑓− . For PDF con-
struction, we first solve for 𝑓 ’s roots, which split the domain H based on
𝑓 ’s sign into H+ and H− . Next, we integrate inside the domain to compute
the normalization constants. There are two potential roadblocks for posi-
tivization i) no analytic form of the roots of 𝑓 , so H+ and H− cannot be
computed, see Fig. 6, and ii) the positivized functions are not analytically
integrable over H+/H− , see Fig. 5.

by previous work [Zeltner et al. 2021; Zhang et al. 2021a], the 𝜕𝛼𝐺
term only has a minor effect on the overall derivative. Hence, we
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(a) Anisotropic Derivative (b) Negative Decomp.
-0.5

0.5

0.0

(c) Positive Decomp.

Fig. 5. Complicated Roots and Product Decomposition of the Anisotropic
GGX BRDF derivative. (a) The derivative 𝜕𝛼𝑥 𝑓 has complicated roots shown
in (a), purple curve. Positivization requires analytical integration over the
domain defined by these roots, which we were unable to perform. Our
product decomposition separates the two terms resulting from the product
rule for differentiation, 𝜕𝛼𝑥 𝑓 = 𝜕𝛼𝑥𝑁𝑔 + 𝑁𝜕𝛼𝑥𝑔, which are both single-
signed as shown in (b,c). Product decomposition does not require integration
up to the complicated roots, which enables easy PDF construction for both
the positive and negative decompositions.

focus on the 𝜕𝛼𝐷 term, which is given by

𝐷 (𝝎ℎ) =
1

𝜋𝛼2
(
sin2 𝜃ℎ
𝛼2 + cos2 𝜃ℎ

)2 (10)

𝜕𝛼𝐷 (𝝎ℎ) =
2 cos2 𝜃ℎ

(
tan2 𝜃ℎ − 𝛼2

)
𝜋𝛼5

(
sin2 𝜃ℎ
𝛼2 + cos2 𝜃ℎ

)3 . (11)

Its roots have an analytic form and are tan𝜃ℎ = 𝛼 for all 𝜙ℎ . Ad-
ditionally, the derivative 𝜕𝛼𝐷 is analytically integrable over both
the positive and negative regions, and so both conditions to apply
positivization are met. Hence, the importance sampling PDFs (and
CDFs) can be obtained for this derivative.

Apart from the derivatives of the isotropic GGX roughness, posi-
tivization can also be used for the derivative of Beckmann BRDFs
with their roughness, and Hanrahan-Krueger BRDF with the scat-
tering parameter 𝑔 of its Henyey-Greenstein phase function.

4.2.2 Inapplicability of Positivization to Anisotropic GGX. For many
BRDFs’ derivatives, however, one of the two conditions fails, which
precludes the use of positivization (and antithetic sampling) for them.
For example, consider the derivative of𝐷 (𝝎ℎ) of an anisotropic GGX
BRDF with its roughness 𝛼𝑥 ,

𝐷 (𝝎ℎ) =
1

𝜋𝛼𝑥𝛼𝑦

(
sin2 𝜃ℎ cos2 𝜙ℎ

𝛼2
𝑥

+ sin2 𝜃ℎ sin2 𝜙ℎ

𝛼2
𝑦

+ cos2 𝜃ℎ
)2

𝜕𝛼𝑥𝐷 (𝝎ℎ) =
cos2 𝜃ℎ

(
3 tan2 𝜃ℎ cos2 𝜙ℎ − tan2 𝜃ℎ sin2 𝜙ℎ𝛼2𝑥/𝛼2𝑦 − 𝛼2𝑥

)
𝜋𝛼4𝑥𝛼𝑦

(
sin2 𝜃ℎ cos2 𝜙ℎ

𝛼2
𝑥

+ sin2 𝜃ℎ sin2 𝜙ℎ

𝛼2
𝑦

+ cos2 𝜃ℎ
)3 .

(12)

Its roots are the set of (𝜃ℎ, 𝜙ℎ) such that the expression
3 tan2 𝜃ℎ cos2 𝜙ℎ − tan2 𝜃ℎ sin2 𝜙ℎ𝛼2𝑥/𝛼2𝑦 − 𝛼2𝑥 = 0, and are shown
in Fig. 5 (a), purple curve. However, we were unable to analytically
integrate the derivative 𝜕𝛼𝑥𝐷 over the positive and negative strata,
see Fig. 5 (a), red and blue regions, which prevented us from applying

(a) Original Function

R(r) = Ng(r)

(b) Derivative (cannot be Positivized)

∂dR(r) = ∂dNg(r) + N∂dg(r)

(c) Product Decomposition: Negative Derivative,
PDF & Sampling Weights

∂dNg(r)

p1(r)

∂dNg(r)/p1(r)

(d) Product Decomposition: Positive Derivative,
PDF & Sampling Weights

N∂dg(r)

p2(r)

∂dNg(r)/p2(r)

(a) Original Function (b) Derivative (cannot be Positivized)

(c) Product Decomposition:
Negative Derivative, PDF & Sampling Weights

(d) Product Decomposition:
Positive Derivative, PDF & Sampling Weights

Fig. 6. Product Decomposition and Inapplicability of Positivization. The
BSSRDF profile 𝑅 (𝑟,𝑑 ) = 𝑁 (𝑑 )𝑔 (𝑟, 𝑑 ) from Burley [2015] (a), is the prod-
uct of a shape function 𝑔 (𝑟,𝑑 ) and normalization term 𝑁 (𝑑 ) . 𝑟 is the
spatial coordinate, and 𝑑 is a parameter that controls its width and height.
Differentiating with respect to 𝑑 gives rise to the real-valued derivative
𝜕𝑑𝑅 (𝑟,𝑑 ) (b). The derivative’s root is given by 3𝑒−2𝑟/3𝑑 = (3𝑑 − 𝑟 )/(𝑟 −𝑑 ) ,
which has no analytic solution and renders positivization inapplicable to
this derivative. However, the derivative can be written as 𝜕𝑑𝑅 (𝑟, 𝑑 ) =

𝜕𝑑𝑁 (𝑑 )𝑔 (𝑟,𝑑 ) + 𝑁 (𝑑 )𝜕𝑑𝑔 (𝑟, 𝑑 ) due to the product rule for derivatives.
The first term (c, yellow) is purely negative and the second term (d, yellow)
is purely positive. These single-signed functions have no sign variance and
can be perfectly importance sampled with the PDFs 𝑝1, 𝑝2 (c,d, blue) leading
to constant sample weights (c,d, red).

positivization to this derivative. We were also unable to find closed-
form expressions for the roots of the derivatives of other materials
like the diffuse BSSRDF from Burley [2015] (Fig. 6) and the isotropic
microfacet ABC BRDF, which prevented us from positivizing them.

It is common in BRDF importance sampling to numerically invert
a CDF using binary search or Newton iterations, and we will do this
with some of our product and mixture decomposition CDFs. How-
ever, for positivization, taking a purely numerical approach is not
practical. Numerically approximating non-analytic roots and non-
analytically integrable PDFs requires storing a high dimensional
representation (for e.g. 6D 𝝎𝑖 ,𝝎𝑜 , 𝛼𝑥 , 𝛼𝑦 for anisotropic GGX). Stor-
ing such a high dimensional histogram (piecewise approximation)
can be infeasible.

Discussion. Positivization is a specific single-signed decomposi-
tion that decomposes the real-valued function into a positive and
a negative function with non-overlapping supports. As a result, it
requires root-finding and analytic integration over complicated do-
mains defined by these roots. In the following two sections, we
discuss two novel decompositions for which the positive and nega-
tive functions are defined over simple domains of integration like a
plane or hemisphere, with overlapping support. As a result, they do
not require root finding, or integration over complicated domains, and
as a consequence can handle a broader class of derivatives.
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+

(a) Product Decomposition

+

+

(b) Mixture Decomposition

Fig. 7. Importance Sampling PDF construction for Product and Mixture
Decomposition. Differentiating the positive-valued functions 𝑓 (𝜔,𝛼 ) =

𝑁 (𝛼 )𝑔 (𝜔,𝛼 ) gives us 𝜕𝛼 𝑓 (𝜔,𝛼 ) = 𝜕𝛼𝑁𝑔 (𝜔 ) + 𝑁𝜕𝛼𝑔 (𝜔 ) for product
decomposition, and differentiating 𝑓 (𝜔,𝛼 ) = 𝛼 𝑓𝑑 (𝜔 ) + (1 − 𝛼 ) 𝑓𝑠 (𝜔 )
gives us 𝜕𝛼 𝑓 (𝜔,𝛼 ) = 𝑓𝑑 (𝜔 ) − 𝑓𝑠 (𝜔 ) for mixture decomposition. For both
decompositions, the two terms 𝑓1 (𝑤 ) and 𝑓2 (𝜔 ) are single-signed. Neither
of the decompositions requires complicated root finding and integration up
to the roots, unlike positivization, see Fig. 4. Instead, the integration domain
is simply the entire hemisphere H. This makes PDF construction for these
decompositions possible for several BRDF derivatives where positivization
was not applicable.

5 PRODUCT DECOMPOSITION
Our first new decomposition is product decomposition. It can handle
the derivatives of anisotropic microfacet BRDFs, diffuse BSSRDFs,
and the isotropic ABC BRDF that positivization could not handle.
The key idea we exploit is that after differentiating any of these
materials, they split up into two terms following the product rule.
Both of these are single-signed, have no sign variance, and are
analytically integrable over their simple domains of integration
(hemisphere or plane).

Several BRDFs (or normal distribution functions) are of the form

𝑓 (𝝎ℎ, 𝛼) = 𝑁 (𝛼)𝑔(𝝎ℎ, 𝛼), (13)

where 𝑔(𝝎ℎ, 𝛼) is a non-negative shape function, which determines
the overall shape of the BRDF over all 𝝎ℎ , at the parameter value 𝛼 .
𝑁 (𝛼) is a directionally constant (independent of 𝝎ℎ) normalization
term that ensures 𝑓 integrates to 1. Differentiating 𝑓 with 𝛼 , we get,

𝜕𝛼 𝑓 (𝝎ℎ, 𝛼) = 𝜕𝛼𝑁 (𝛼)𝑔(𝝎ℎ, 𝛼) + 𝑁 (𝛼)𝜕𝛼𝑔(𝝎ℎ, 𝛼). (14)

Because 𝑁 and 𝜕𝛼𝑁 are directionally constant, the variance in the
two terms above comes from 𝑔 and 𝜕𝛼𝑔 respectively. The first term
above is single-signed because 𝑔 ≥ 0. The second term with 𝜕𝛼𝑔 can
potentially be real-valued. However, we have found it to be single-
signed for several common BRDFs. For example, for the anisotropic

GGX normal distribution function 𝐷 (𝝎ℎ), we have,

𝐷 (𝝎ℎ, 𝛼𝑥 , 𝛼𝑦) = 𝑁 (𝛼𝑥 , 𝛼𝑦)𝑔(𝝎ℎ, 𝛼𝑥 , 𝛼𝑦)
𝑁 (𝛼𝑥 , 𝛼𝑦) = (𝜋𝛼𝑥𝛼𝑦)−1

𝑔(𝝎ℎ, 𝛼𝑥 , 𝛼𝑦) =
(
sin2 𝜃ℎ cos2 𝜙ℎ

𝛼2𝑥
+ sin2 𝜃ℎ sin2 𝜙ℎ

𝛼2𝑦
+ cos2 𝜃ℎ

)−2
𝜕𝛼𝑔(𝝎ℎ, 𝛼𝑥 , 𝛼𝑦) = 4𝑔(𝝎ℎ, 𝛼𝑥 , 𝛼𝑦)3/2 sin2 𝜃ℎ cos2 𝜙ℎ𝛼−3

𝑥 ,

(15)

where 𝜕𝛼𝑔 is single-signed, see Fig. 5. Additionally, 𝜕𝛼𝑔 is also ana-
lytically integrable over its hemispherical domain.
Let us provide some geometric intuition for why the shape de-

rivative 𝜕𝛼𝑔 is often single-signed. For our BRDFs, the parameter
𝛼 often controls the variance of the distribution, e.g., 𝛼𝑥 , 𝛼𝑦 for
GGX, Beckmann, 𝑛𝑢 , 𝑛𝑣 for Ashikhmin-Shirley. For all of these, the
variance 𝛼 stretches 𝑔 horizontally, and increases (or decreases) its
value at all locations, making its derivative single-signed. On the
other hand, 𝛼 stretches 𝑁 (𝛼) vertically to negate the increase (or
decrease) in area due to 𝑔, and ensure it integrates to 1.

We construct importance sampling PDFs for the two single-signed
terms separately, with PDFs 𝑝1 ∝ 𝑔 and 𝑝2 ∝ 𝜕𝛼𝑔,

𝐼 =

∫
𝜕𝛼 𝑓 (𝝎ℎ)d𝝎ℎ

=

∫
𝜕𝛼𝑁𝑔(𝝎ℎ)d𝝎ℎ +

∫
𝑁𝜕𝛼𝑔(𝝎ℎ)d𝝎ℎ

≈
𝜕𝛼𝑁𝑔(𝝎ℎ,1)
𝑝1 (𝝎ℎ,1)

+
𝑁𝜕𝛼𝑔(𝝎ℎ,2)
𝑝2 (𝝎ℎ,2)

.

(16)

Fig. 7 (a) describes the pipeline to generate importance sampling
PDFs for product decomposition. Product decomposition can handle
the derivatives of anisotropic GGX, Beckmann, Ashikhmin-Shirley
which are not analytically integrable over the positivized domains,
and Burley’s diffuse BSSRDF and the isotropic ABC BRDF, which
have no closed-form solution for the roots. However, they all have
single-signed 𝜕𝛼𝑔 which is analytically integrable.
Note that the product rule in and of itself does not guarantee

a single-signed decomposition. For example, the product of the
microfacet distribution (𝐷) and geometric terms (𝐺) does not lead
to a single-signed decomposition for the derivative with 𝛼𝑥 (or 𝛼𝑦 ).
This is because both 𝜕𝛼𝑥𝐷 and the 𝜕𝛼𝑥𝐺 terms are real-valued. The
decomposition 𝐷 = 𝑁𝑔 is one of the many product decompositions,
but the only one we found to preserve the single-signed property.

6 MIXTURE DECOMPOSITION
Our second new decomposition further expands the set of BRDF
derivatives we can handle. Consider, for example, a BRDF made up
of a diffuse 𝑓𝑑 and specular 𝑓𝑠 lobe with scalar mixture weights 𝑘𝑑
and 1 − 𝑘𝑑 respectively.

𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝑘𝑑 𝑓𝑑 (𝝎𝑖 ,𝝎𝑜 ) + (1 − 𝑘𝑑 ) 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 )
𝜕𝑘𝑑 𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝑓𝑑 (𝝎𝑖 ,𝝎𝑜 ) − 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 ) .

(17)

The derivative with the mixture weight 𝑘𝑑 is positive when the
diffuse lobe contribution is higher than the specular lobe and nega-
tive otherwise. In general, this derivative is very hard to positivize,
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because 𝑓𝑑 and 𝑓𝑠 can be arbitrary BRDFs, and so the roots of 𝑓𝑑 − 𝑓𝑠
are unlikely to have a simple analytic form.

However, we can once again decompose this derivative into single-
signed functions with overlapping support; we refer to this as the
mixture decomposition. Since 𝑓𝑑 and 𝑓𝑠 are non-negative valued
BRDFs, they are single-signed, and can be importance sampled
separately with appropriate PDFs 𝑝𝑑 and 𝑝𝑠 .

𝐼 =

∫
𝜕𝑘𝑑 𝑓 (𝝎𝑖 )d𝝎𝑖 =

∫
𝑓𝑑 (𝝎𝑖 )d𝝎𝑖 −

∫
𝑓𝑠 (𝝎𝑖 )d𝝎𝑖

≈
𝑓𝑑 (𝝎𝑖,𝑑 )
𝑝𝑑 (𝝎𝑖,𝑑 )

−
𝑓𝑠 (𝝎𝑖,𝑠 )
𝑝𝑠 (𝝎𝑖,𝑠 )

.

(18)

Mixture weights show up in all Uber BRDFs, like the Autodesk
Standard Surface, Disney BRDF, etc., and our mixture decomposition
can be applied to all of them.
Mixture decomposition is also applicable to the derivative of

BRDFs that are not explicitly mixture models, but internally are
made up of different lobes, with parametric weights. For example,
the Oren-Nayar BRDF, which is a linear combination of two terms.
Here, the positive weights 𝐴(𝜎), 𝐵(𝜎) depend upon the roughness
𝜎 of the BRDF.

𝑓 (𝝎𝑜 ,𝝎𝑖 ) = 𝐴(𝜎) 𝜌
𝜋
cos𝜃𝑖

+ 𝐵(𝜎) 𝜌
𝜋
max (0, cos(𝜙𝑖 − 𝜙𝑜 )) sin𝛼 tan 𝛽 cos𝜃𝑖 ,

(19)

where 𝛼 = max (𝜃𝑖 , 𝜃𝑜 ), 𝛽 = min (𝜃𝑖 , 𝜃𝑜 ). Once again, since both
terms of the BRDF above are positive, the real-valued derivative
with 𝜎 is simply the sum of a positive and a negative term,

𝜕𝜎 𝑓 (𝝎𝑜 ,𝝎𝑖 ) = 𝜕𝜎𝐴(𝜎)
𝜌

𝜋
cos𝜃𝑖

+ 𝜕𝜎𝐵(𝜎)
𝜌

𝜋
max (0, cos(𝜙𝑖 − 𝜙𝑜 )) sin𝛼 tan 𝛽 cos𝜃𝑖 ,

(20)

with the sign of the term decided by the sign of 𝜕𝜎𝐴 and 𝜕𝜎𝐵. Im-
portance sampling the first term is simply cosine-hemispherical
sampling, and we provide an importance sampling PDF for the sec-
ond term in Appendix A.3.2. Besides Oren-Nayar, the microcylinder
BRDF [Sadeghi et al. 2013] is also a mixture model with weights
𝑘𝑑 , 1 − 𝑘𝑑 , where 𝑘𝑑 is the isotropic scattering coefficient, and can
be handled by mixture decomposition as well.

7 RECIPE FOR IMPORTANCE SAMPLING BRDF
DERIVATIVES

We now present a recipe to importance sample BRDF derivatives
based on the key ideas introduced in the previous sections.

Step 1, Positivization. Given a real-valued BRDF derivative 𝜕𝛼 𝑓 ,
check if it can be positivized. For positivization to be applicable, 𝜕𝛼 𝑓
should have analytic roots. Compute the normalization constants
for the solid angle PDFs 𝑝+ (𝝎𝑖 ) ∝ max (𝜕𝛼 𝑓 (𝝎𝑖 ), 0) , 𝑝− (𝝎𝑖 ) ∝
min (𝜕𝛼 𝑓 (𝝎𝑖 ), 0), and their marginal and conditional counterparts
𝑝+ (𝜙𝑖 ), 𝑝− (𝜙𝑖 ), 𝑝+ (𝜃𝑖 |𝜙𝑖 ), 𝑝− (𝜃𝑖 |𝜙𝑖 ), if they are analytically integrable.
See Fig. 4 for the PDF generation, and Eqn. (8) for the estimator.

Step 2, Try Product or Mixture Decomposition. If positivization
is inapplicable for either reason (no analytic roots or lack of analytic

Camera

Shading Point

Camera

Shading Point

(b) Product and Mixture Decomposition(a) Positivization

Light Source Light Source

Fig. 8. Positivization, Product and Mixture Decomposition for direct illu-
mination. All three techniques send out two shadow rays corresponding to
two different sampling techniques at each shading point, shown by red and
green arrows. For positivization, the PDFs for these sampling techniques
have non-overlapping support, shown by the red and green lobes. For mix-
ture and product decomposition, however, the corresponding PDFs may
have overlapping support.

integrability), either product or mixture decomposition might still
be applicable.

Step 2.1, Product Decomposition. If the original BRDF is of the
form 𝑁 (𝛼)𝑔(𝝎𝑖 , 𝛼), where 𝛼 appears in a directionally invariant
(independent of 𝝎𝑖 ) normalization term 𝑁 (𝛼) and an unnormalized
shape function 𝑔(𝝎𝑖 , 𝛼), product decomposition may be applicable.
First check if 𝜕𝛼𝑔 is single-signed, i.e., it has a constant sign for all
𝝎𝑖 , and is analytically integrable. If these conditions hold, product
decomposition is applicable. Construct a PDF 𝑝2 (𝝎𝑖 ) ∝ 𝜕𝛼𝑔 and
compute the normalization terms for it and its conditional and
marginal counterparts. The other PDF 𝑝1 (𝝎𝑖 ) ∝ 𝑔 is simply the
BRDF sampling PDF. See Fig. 7 for the PDF generation, and Eqn.
(16), for the estimator.

Step 2.2, Mixture Decomposition. If instead the parameter 𝛼
appears in the form of linear combination weights either explicitly
as a mixture model between two BRDFs, or implicitly as a mixture
between two lobes that form a single BRDF, mixture decomposition
is likely applicable here. In this case, simply use the PDFs and sam-
pling strategies most suitable for the two mixture lobes if they are
available (e.g., visible normal distribution function sampling for a
GGX lobe), or construct PDFs 𝑝1 (𝝎𝑖 ) ∝ 𝑓1 (𝝎𝑖 ), 𝑝2 (𝝎𝑖 ) ∝ 𝑓2 (𝝎𝑖 )
for the two lobes, where 𝑓1, 𝑓2 are the two lobes. See Fig. 7 for the
PDF generation, and Eqn. (18) for the estimator.
Fig. 8 depicts the estimators for all three of our decompositions

for direct illumination. They all require two shadow rays at the
shading point, corresponding to the positive and negative lobes of
the corresponding decomposition.
Although we have not found examples that require it, our three

decompositions can also be interleaved with one another for com-
plicated BRDF derivatives. For example, it is possible that for some
BRDF derivatives, the derivative of the shape function from the prod-
uct rule 𝜕𝛼𝑔 could be real-valued. It could then further be positivized
to eliminate sign variance.

Forward Rendering Sampling Technique Reuse. Both product and
mixture decomposition reuse BRDF sampling developed for for-
ward rendering as one (or both) of the techniques for differential
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BRDF sampling. For product decomposition, this corresponds to
𝑝1 ∝ 𝑔. For mixture decomposition, perfect importance sampling
can be achieved by only employing two standard BRDF sampling
techniques from forward rendering in some cases. BRDF sampling
when used directly to estimate for 𝜕𝛼 𝑓 suffers from sign and shape
variance, however, when paired with the right decomposition, it
can correctly handle the shape variance of one of the terms.

Multiple Importance Sampling. For the product and mixture de-
compositions, the positive and negative decomposition PDFs can
have overlapping support (for positivization they are necessarily
non-overlapping). As a result, the samples generated for one decom-
position can be shared with the other using Multiple Importance
Sampling. Also, all three of our decompositions reduce the variance
from the differential BRDF 𝜕𝛼 𝑓 , and can be used in conjunction with
light source sampling via Multiple Importance Sampling to reduce
the lighting, 𝐿𝑖 ’s variance.

8 RESULTS
We organize our results into two subsections. First, we demonstrate
that our decompositions do reduce variance in practice for a number
of BRDF derivatives under a wide variety of lighting conditions in
Sec. 8.1. Next, we demonstrate that lower variance in gradients in-
deed does enable better spatially-varying texture recovery in inverse
rendering, in Sec. 8.2.

Implementation Details. We implemented all the different decom-
positions and BRDFs on our own CPU-based differentiable renderer,
using the Embree [Wald et al. 2014] library for ray tracing. At each
shading point, all three of our decompositions require two shadow
rays, see Fig. 8. To have a fair comparison with BRDF sampling, we
shoot out two shadow rays at each shading point for it too, which
ensures an equal-ray comparison with our method. Since our sam-
pling routines have similar timings to BRDF importance sampling
(Table 2), all comparisons are also equal time and we report the
timings for each experiment in insets. All our standard deviation
comparison images are computed by taking the square root of the
averaged squared error of the gradient images, which were each
generated at 9 samples per pixel over 50 runs. The variance improve-
ment can be easily computed by squaring all the standard deviation
improvement numbers in the insets. Additionally, we also provide
difference images to show the specific regions where our estimators
outperform BRDF sampling in Fig. 29.

Sample Generation Timings. We report the average times (over
1,000,000 runs) to generate samples using our routines and baselines
in Table 2. Our routines involve CDF inversion, which we perform
using a combination of Newton iterations and bisection search as
described by Yuksel et al. [2022] (maximum 64 iterations, 10−6 CDF
error tolerance). Our sampling routines only add a small overhead
in the overall path-tracing pipeline, see timings in Figs. 10 to 13
and 18 to 23.

Convergence Rates. Our estimators are intended to be used within
inverse rendering pipelines. This necessitates low sample counts
per pixel (1 to 16) for fast iteration times. For these sample budgets,

Table 2. Sample generation timings for our single signed decompositions
(SSD). The timings are to generate a single sample, averaged over 1, 000, 000
runs. The first two rows include timings for BRDF importance sampling for
cosine and GGX BRDFs for reference; our routines add negligible overhead
in the overall run time in a differentiable path tracer, see Figs. 10 to 13 and 18
to 23.

Material SSD Time Method

Cosine Fwd. 0.64𝜇s Analytic
GGX [Heitz 2018] Fwd. 2.25𝜇s Analytic
Anistropic GGX (ours) Prod. 5.97𝜇s CDF Inv.
Anistropic Beckmann (ours) Prod. 6.32𝜇s CDF Inv.
Anistropic Ashikhmin-Shirley (ours) Prod. 4.93𝜇s CDF Inv.
Oren-Nayar (ours) Mix. 1.97𝜇s CDF Inv.
Hanrahan-Krueger (ours) Pos. 9.04𝜇s CDF Inv.
Isotropic GGX [Zeltner et al. 2021] Pos. 0.91𝜇s Analytic

1 9 25 49 81 121 169
Samples Per Pixel

0.1

1

10

100

Va
ri

an
ce

BRDF Sampling
BRDF Sampling (Strat.)
Our Product Decomp. (Strat.)
Our Product Decomp.
Theory: Monte Carlo O(N−1)
Theory: Strat. Mitchell O(N−1.5)

Fig. 9. Convergence Rate For Product Decomposition. Product Decom-
position improves upon BRDF Sampling in the low sample regime (1-16
samples) with and without stratification. With stratification, at high sample
counts, both estimators converge to the same rate since the variance is
dominated by discontinuities in the integrand [Mitchell 1996]. Additionally,
in this regime, as the strata get smaller, most of them become single-signed;
in effect, this reduces (but does not eliminate) sign variance for BRDF sam-
pling. Inverse rendering operates in the low sample count regime to enable
fast iteration times, so the variance reduction provided by estimators (even
with stratification) plays an important role here.

our estimators outperform baselines both without stratification and
with it (Fig. 9, all other results in the paper are with stratification).

Without stratification, the estimators show the typical O(𝑁 −1)
convergence. Stratification improves the convergence rate. Inter-
estingly, with stratification, standard BRDF importance sampling
performs as well as our methods at high sample counts (100+).
Mitchell [1996] provides a possible explanation: at high sample

counts with stratification, variance is dominated by visibility discon-
tinuities in the integrand, so these pixels have convergence rates of
O(𝑁 −1.5). Better importance sampling improves the convergence
rate for the continuous differential BRDF, noticeable at low sample
counts. At higher sample counts, visibility dominates the variance
which none of the techniques handle. Also, BRDF sampling (which
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(a) BRDF Sampling (b) Our Product Decomposition

0

8

8.63x

32.87x7.45x

5.26s

Forward Rendering

Fig. 10. Product decomposition v.s. BRDF sampling under constant illu-
mination. We show the estimated standard deviation of derivatives. Num-
bers indicate the relative improvement, higher is better. The scene contains
an anisotropic Beckmann BRDF under constant environment illumination.
Under constant illumination, the BRDF derivative is the main source of vari-
ance. Our product decomposition correctly handles both the sign and shape
variance, because of which we see an overall 8.63× reduction in standard
deviation compared to BRDF sampling. 3D model courtesy of Turbosquid
user id_inc.

does not handle sign variance) benefits from stratification at high
sample counts since smaller strata are increasingly single-signed
Nevertheless, ourmethods are able to provide significant variance re-
duction (by nearly an order of magnitude) in the low sample regime,
most relevant to us. This phenomenon is a general observation for
importance sampling, not limited to differentiable rendering.

8.1 Derivative Comparison
8.1.1 Positivization. First, we compare positivization with BRDF
sampling for the derivative of two BRDFs in Fig. 1. The scene is
lit by two area lights. The isotropic GGX teapot (with 𝛼 = 0.02)
is differentiated with its roughness 𝛼 , and the Hanrahan-Krueger
(with 𝑔 = −0.9) lion is differentiated with its Henyey-Greenstein
parameter for anisotropy 𝑔. The Henyey-Greenstein phase function
at 𝑔 = −0.9 is highly back-scattering and is very badly importance
sampled by regular BRDF sampling, which cannot correctly account
for the highly peaked and signed nature of the derivative. Since
positivization is correctly able to handle both sign and shape related
variance, we see significant standard deviation reduction of 1.96×
and 58.57× for the teapot and lion respectively.

8.1.2 Product Decomposition. Next, we compare product decom-
position with BRDF sampling for the derivative of an anisotropic
Beckmann BRDF with its roughness 𝛼𝑥 , lit under constant envi-
ronment illumination in Fig. 10. Positivization (and by extension
Zeltner et al.) cannot handle this derivative, see Sec. 4.2.2, and Zhang
et al.’s method fails for even derivatives like this one, see Fig. 26.
Constant illumination eliminates variance from lighting and only

(b) Our Product Decomposition with MIS

(a) BRDF Sampling

Forward Rendering

1x
8.85s

0

25

Fig. 11. Product decomposition for the Anisotropic Beckmann BRDF. In
this scene, we demonstrate that product decomposition (with MIS across
the two techniques) can significantly reduce the standard deviation (2.09×)
for the estimation of the anisotropic roughness derivative 𝛼𝑥 under (non-
constant) environment illumination and complex geometry. The object
exhibits inter-occlusions due to its highly non-convex geometry leading
to additional visibility variance. 3D model courtesy of Turbosquid user
Sonic_art.

(a) BRDF Sampling (b) Our Product Decomposition with MIS

Forward Rendering

1.31x1x
7.5s7.05s

0

30

Fig. 12. Product decomposition for the anisotropic GGX BRDF. Our
product decomposition (with multiple importance sampling across the two
techniques) is also effective in reducing the standard deviation of the de-
rivative of the anisotropic roughness for the GGX BRDF (1.31×). Here, we
showcase a scene lit under environment lighting where the object exhibits
intricate geometry with several inter-occlusions. 3D model courtesy of Tur-
bosquid user Shef2oo.

keeps variance from the BRDF derivative and visibility. Since prod-
uct decomposition can correctly handle both the sign and shape
variance of the BRDF derivative, it has an overall 8.63× reduction in
standard deviation, whereas BRDF sampling fails because it cannot
handle either source of variance. In most regions (Fig. 10 see right
inset), the derivative of the normal distribution function 𝜕𝛼𝐷 is the
major source of BRDF derivative variance; we eliminate it and see a
big improvement of 32.7×. However, in the grazing angle regions
(Fig. 10 see left inset), the derivative of the shadowing function 𝜕𝛼𝐺

dominates. Here, our improvement is still significant (7.45×), but
relatively less pronounced, since our sampling strategy minimizes
𝜕𝛼𝐷’s variance.
Now, we change the lighting to realistic environment illumina-

tion (see insets for forward renderings), and the geometry to objects
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(a) BRDF Sampling (b) Our Product Decomposition with MIS
1.21x1x

Forward Rendering

5.25s 5.49s
0

0.4

Fig. 13. Product decomposition for the Ashikhmin-Shirley BRDF. We
also demonstrate the benefits of our product decomposition in estimating
the derivatives with the anisotropic exponent 𝑛𝑢 for the Ashikhmin-Shirley
BRDF; it reduces standard deviation by 1.21×. The cat sculpture is quite
non-convex and the lighting is environment illumination which leads to
additional sources of variance (from visibility and lighting) apart from the
differential BRDF. 3D model courtesy of Turbosquid user Skazok.

with intricate geometry in Figs. 11 to 13; we estimate the derivative
of the anisotropic Beckmann, GGX and Ashikhmin-Shirley BRDFs
in these experiments respectively. Apart from BRDF derivative vari-
ance, these scenes have two other major sources of variance, lighting
and visibility. When the variance is significant from other sources
too, we have found that sharing samples between the positive and
negative decomposition is beneficial, see Sec. 7, Multiple Importance
Sampling (MIS). In all three experiments, we have found that our
product decomposition is able to outperform BRDF importance sam-
pling and achieve lower standard deviation in gradient estimation
2.09×, 1.31× and 1.21× respectively.

We show two more examples of product decomposition in Fig. 1,
for anisotropic GGX and Beckmann BRDF derivatives, which achieve
standard deviation reductions of 1.56× and 3.61× respectively. The
insets in the top row of Fig. 1 show the regions where our decom-
position has lower variance than BRDF sampling in blue. Product
decomposition outperforms BRDF sampling in almost all regions.
We provide additional comparisons with Zhang et al. for the

anisotropic roughness derivatives of the GGX BRDF for the scenes
modelled in Figs. 10 and 12, in fig. 26; their estimator has higher
standard deviation than BRDF importance sampling. We emphasize
that this is behavior is expected, since they designed their estimator
to estimate odd derivatives (for example, the derivative with the
half vector), but the roughness derivative is even.

8.1.3 Mixture Decomposition. Finally, we compare BRDF sampling
with Mixture Decomposition to estimate the derivative of a mixture
model with its mixture weight for the fish-shaped pot in Fig. 1. The
mixture model is a linear combination of a Lambertian diffuse lobe,
and a GGX specular lobe and the lighting is two area lights. Mixture
decomposition can reduce the standard deviation by 4.72x, because
it correctly handles shape and sign variance, unlike BRDF sampling.

Fig. 1 also shows an example of an Oren-Nayar pot, and its deriv-
ative with the roughness 𝜎 . BRDF sampling here is simply cosine
hemispherical sampling, and works quite well in the central regions
of the pot, because the cosine lobe is dominant in the non-grazing

(b) g - Texture Recovery Loss (L1)
over Iterations

(c) Ground Truth Texture For
Sca�ering Parameter g

(d) Texture Recovery Absolute Error
Positivization (Ours) ADAM: 0.0405

BRDF Sampling ADAM: 0.0469

(a) Forward Rendering of Target

100 120 140 160 180 200

10− 1

4×10− 2

6×10− 2

BRDF Sampling SGDm
BRDF Sampling ADAM

(b) g - Texture Recovery Loss (L1)
over Iterations

Positivization (Ours) SGDm
Positivization (Ours) ADAM

0.0

0

0.08

-0.8

Fig. 14. Inverse Rendering of the scattering parameter 𝑔 of a Hanrahan-
Krueger BRDF. (a) forward rendering of the target. Our positivization has
a lower texture recovery error than BRDF sampling under two setups, one
using the ADAM optimizer and the other using SGD with momentum
(SGDm) (b). For the SGDm experiments, we manually tune the learning
rate to the highest possible value without the loss diverging. Positivization
admits a higher learning rate (𝑙𝑟 = 1) since its gradients have lower variance
than BRDF sampling (𝑙𝑟 = 0.5), see Fig. 28 for the final SGDm results.
Similar to [Nimier-David et al. 2022], we find that the difference between
our improved estimator (positivization) and the baseline estimator (BRDF
sampling) is more pronounced when SGDm is used. (c) shows the ground
truth texture, with an inset of the recovered texture using positivization. (d)
shows the error images for positivization and BRDF sampling, both using
the ADAM optimizer. BRDF sampling is unable to recover the texture in the
highly backscattering logo region (see purple box). However, positivization
can handle the logo region well.

angle regions, see Eqn. (19). However, in the grazing angle regions
towards the edges of the pot where the correction term is more
dominant, BRDF sampling breaks down and has high variance. On
the other hand, our mixture decomposition with MIS correctly ac-
counts for the derivative of both terms with regard to their sign and
shape variance, and can achieve low variance in all regions of the
pot, and leads to a 3.91× reduction in standard deviation.

8.2 Inverse Rendering Comparison
We demonstrate the benefits of correctly handling sign variance in
gradients, for gradient-descent-based inverse rendering. We apply
inverse rendering to the task of spatially varying texture recovery,
and evaluate the effectiveness of all three of our decompositions on
it. Our results for positivization are presented in Fig. 14, product
decomposition in Fig. 15, and mixture decomposition in Fig. 16. All
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(a) Forward Rendering of Target
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(b) αx , αyTexture Recovery Loss (L1)
over Iterations

BRDF Sampling - αx Texture
BRDF Sampling - αy Texture

Product Decomposition (Ours) - αx Texture
Product Decomposition (Ours) - αy Texture
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Fig. 15. Inverse Rendering of the roughness of an Anisotropic Beckmann
Plate under a photometric stereo setup. The forward rendering of the
target under the two lighting setups is shown in (a) and its inset. The texture
recovery loss (b) demonstrates that our product decomposition achieves
lower texture recovery error than BRDF Sampling for both the 𝛼𝑥 and 𝛼𝑦

textures. (c) and (d) show the ground truth textures for 𝛼𝑥 and 𝛼𝑦 , and the
insets show our recovered textures.

(a) Forward Rendering of Target (b) σ - Texture Recovery Loss (L1)
over Iterations

200 250 300 350 400 450 500

1.8× 10−2

2× 10−2

2.2× 10−2

2.4× 10−2

BRDF Sampling
Mixture Decomposition (Ours)

Our Recovery
Rendering

Initialization
Rendering

Fig. 16. Inverse Rendering of the roughness𝜎 of an Oren-Nayar BRDF. (a)
forward rendering of the target, insets show a rendering of the initialization
and our final recovered texture. (b) Our mixture decomposition correctly
deals with sign variance and has lower variance in gradients, and as a result
has lower texture recovery error.

our inverse rendering results use 4 samples per pixel for both for-
ward and gradient rendering at each optimization iteration. We use
the ADAM optimizer [Kingma and Ba 2015] and the respective loss
graphs show the mean absolute texture recovery error (𝐿1) after
some initial iterations. In Fig. 14, we show that using the ADAM

optimizer instead of SGD with momentum (SGDm) reduces the
impact of gradient outliers, similar to Nimier-David et al.’s observa-
tion [2022]. Nonetheless, our estimators outperform the baselines
in all setups.
For positivization (Fig. 14), we recover the (spatially varying)

scattering parameter 𝑔 of a Hanrahan-Krueger BRDF with the semi-
infinite depth assumption, lit by a single area light. The ground truth
texture consists of a slightly back-scattering background region
with 𝑔 = −0.3, and a highly back-scattering logo region with 𝑔 =

−0.9, see Fig. 14 (c). We initialized the scattering parameter 𝑔 with
a random negative number. Positivization consistently has lower
texture recover error compared to BRDF sampling, especially in the
highly back-scattering region.
For product decomposition (Fig. 15), we optimize the spatially

varying anisotropic roughness textures (𝛼𝑥 and 𝛼𝑦 ) of a Beckmann
BRDF under a photometric stereo setup under two illumination
conditions. The two lighting conditions are rotated versions of the
same environment map. Starting from a random initialization for
both textures, product decomposition’s correct handling of the sign
variance leads to a gradient estimator with lower overall variance,
and consequently ensures lower texture recovery error across all
iterations, as shown in Fig. 15 (b). The final recovery is displayed in
Fig. 15 (c),(d).
Our product decomposition computes the gradients for both

roughness values using three samples at each shading point com-
bined using multiple importance sampling (one each from 𝑝1, 𝑝2,𝑥 ,
𝑝2,𝑦 ). To ensure an equal-ray budget, we use three samples for BRDF
sampling at each shading point too.
For mixture decomposition in Fig. 16, we recover the spatially

varying roughness of an Oren-Nayar BRDF under environment
map illumination. Once again, mixture decomposition benefits from
lowered variance in gradients, and can recover a texture with lower
error than BRDF sampling at an equal ray-triangle intersection
budget, see Fig. 16 (b).

9 GLOBAL ILLUMINATION
We now describe how to importance sample BRDF derivatives under
multiple bounce global illumination. The recursive rendering equa-
tion [Kajiya 1986] (ignoring emission) is given by a generalization
of Eqn. (1),

𝐿𝑟 (𝒚,𝝎𝑜 ;𝛼) =
∫

𝑓 (𝒚,𝝎𝑖 ,𝝎𝑜 ;𝛼)𝐿𝑟 (𝒛,−𝝎𝑖 ;𝛼)d𝝎𝑖 , (21)

where we have substituted the incoming radiance 𝐿𝑖 (𝒚,𝝎𝑖 ), with the
outgoing/reflected radiance 𝐿𝑟 (𝒛,−𝝎𝑖 ;𝛼), and 𝒛 = rayTrace(𝒚,𝝎𝑖 )
is the first intersection point from𝒚 in the direction𝝎𝑖 . The recursive
call of 𝐿𝑟 is a function of the BRDF parameter 𝛼 because upon
unrolling the recursion, it may be a function of an 𝛼 dependent
BRDF. Differentiating this expression, we get,

𝜕𝛼𝐿𝑟 (𝒚,𝝎𝑜 ;𝛼) =
∫

𝜕𝛼 𝑓 (𝒚,𝝎𝑖 ,𝝎𝑜 ;𝛼)𝐿𝑟 (𝒛,−𝝎𝑖 ;𝛼)d𝝎𝑖 (22)

+
∫

𝑓 (𝒚,𝝎𝑖 ,𝝎𝑜 ;𝛼)𝜕𝛼𝐿𝑟 (𝒛,−𝝎𝑖 ;𝛼)d𝝎𝑖 , (23)

which recursively describes how differential radiance is reflected.
The two integrals (Eqn. (22) and (23)) can be importance sampled
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Fig. 17. Branching for Global Illumination with Max Depth=3 for Prod-
uct & Mixture Decomposition. Starting from a single vertex at 𝑑 = 0,
estimating 𝜕𝛼𝐿𝑟 requires recursive estimation of both 𝐿𝑟 and 𝜕𝛼𝐿𝑟 via
Eqns. (22) and (23). For product & mixture decomposition, since one new
branch is created at every vertex, the total number of rays used here is qua-
dratic i.e𝑂 (𝑑2 ) , in the maximum depth 𝑑 . The sampling technique 𝑝1 is the
same for BRDF sampling and the positive lobe of the BRDF derivative, and
𝑝2 is the sampling technique for the negative lobe. For positivization, two
new branches are created at each vertex corresponding to 𝑝+, 𝑝− , however,
once created, they only require evaluation of 𝐿𝑟 , and do not further branch
out, so the complexity is still 𝑂 (𝑑2 ) .

separately. We have seen how to importance sample Eqn. (22) by
applying different BRDF derivative decompositions in Sections 4.2, 5,
and 6. Irrespective of the decomposition required, this requires two
evaluations of 𝐿𝑖 corresponding to the positive and negative lobes
and is done by regular path tracing (similar to the standard splitting
approach [Arvo and Kirk 1990]). To importance sample Eqn. (23),
we follow standard BRDF sampling and continue the same recursive
importance sampling of 𝜕𝛼𝐿𝑟 at the next shading point.
This means that we need three samples at each shading point,

one each for BRDF, positive lobe and negative lobe importance
sampling. Fortunately, for product and mixture decomposition, we
can reduce this to two samples at each shading point. For product
decomposition, as we saw in Sec. 5, one of either the positive or
negative lobe decomposition PDFs is the same as BRDF sampling,
and can share a sample with it. For mixture decomposition, BRDF
sampling can be simulated by randomly choosing a sample from
either the positive or negative lobes with the probability equal to
the mixture weight of the BRDF sampling strategy.

Branching Complexity and Comparison with BRDF sampling. Even
thoughwe use two samples to estimate Eqn. (22), the total number of
rays required to estimate 𝜕𝛼𝐿𝑟 for a maximum depth 𝑑 is quadratic
i.e., 𝑂 (𝑑2), instead of exponential, see Fig. 17, whereas it is 𝑂 (𝑑)
for BRDF sampling. This is because we only apply splitting when
estimating Eqn. (22), which recurses on 𝐿𝑟 , and we do not split when
estimating Eqn. (23). The recursive call of 𝐿𝑟 in Eqn. (22) does not
require splitting, which prevents exponential branching.

Variance Reduction under Global Illumination. All of our results
are subject to an equal-ray budget setup to ensure fair comparisons.
We also include wall clock times that reflects this.

(a) BRDF Sampling (b) Our Mixture Decomposition

Forward Rendering

4.1s 4.13s

0

0.3

Fig. 18. Comparison between BRDF Sampling and Mixture Decomposition
under 1 bounce Global Illumination and equal ray-triangle intersection
budget. The mixture BRDF is given by 𝑓 = 𝑤𝑓𝑑 + (1 − 𝑤 ) 𝑓𝑠 with 𝑤 = 0.1
for the left box and 𝑤 = 0.9 for the right box. We estimate the derivative
with the weight 𝑤. 𝑓𝑑 is a Lambertian diffuse lobe, and 𝑓𝑠 is an isotropic
GGX lobe with 𝛼 = 0.05. Mixture decomposition leads to lower variance in
most regions since it correctly deals with sign variance. However, in some
regions, e.g., the green inset, the lighting, and visibility variance is more
significant, and our improvements in this region are less prominent.

(a) BRDF Sampling (b) Our Mixture Decomposition w/ MIS

Forward Rendering

0

1

Fig. 19. Derivative of Glossy Reflection. We estimate the derivative of
a glossy reflection of a teapot with the teapot’s mixture weight (100 ray
budget). The teapot is modelled by a BRDF with a GGX lobe (𝛼 = 0.05) and
a diffuse lobe, with the weight of the GGX lobe 𝑤 = 0.1 and the glossy plate
by a GGX BRDF with 𝛼 = 0.01. Our estimator produces derivatives with
significantly lower variance by performing mixture decomposition (with
MIS across the two techniques) at the second path vertex (on the teapot)
which reduces both sign and shape variance of the differential BRDF. 3D
model courtesy of Benedikt Bitterli.

We have found that for one-bounce global illumination, our
mixture decomposition can reduce standard deviation by 1.55×,
see Fig. 18. Next, we show results for gradient estimation in two
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(a) BRDF Sampling (b) Our Positivization

Forward Rendering

16.63s16.4s

0

50

Fig. 20. Caustic Derivative. We estimate the derivative of a caustic pattern
formed on a diffuse surface by a metallic cylinder modelled by an isotropic
GGX BRDF with 𝛼 = 0.01 (100 ray budget). Despite the fact that posi-
tivization branches out into three paths at the second path vertex (on the
cylinder), it is able to produce much cleaner gradients with lower variance
since it can correctly account for the differential BRDF’s sign and shape
variance on the cylinder.

(a) BRDF (b) Our Mixture
Direct Illumination Global Illumination

Forward Rendering

(a) BRDF (b) Our Mixture

0

0.5

0

1

Fig. 21. Mixture weight derivative estimation for an outdoor scene
under direct and one bounce global illumination. All surfaces (except the
roof) are modelled by a mixture BRDF (between a diffuse and a GGX lobe
with the weight of the specular lobe 𝑤 = 0.9), we estimate the derivative
with 𝑤. Both our direct and global illumination mixture decomposition
estimators (with MIS across the two techniques) significantly reduce the
standard deviation of the estimated gradients as compared to BRDF sam-
pling at an equal computation budget (9 samples for DI and 25 rays for GI).
3D model courtesy of Blendswap user MrChimp2313.

typical global illumination setups, glossy reflections and caustics. In
Fig. 19, we compute the derivative of a glossy reflection with respect
to the mixture weight of the teapot that produces the reflection.
Once again, our estimator produces gradients with much lower
standard deviation, 6.23× in this setting due to our better importance
sampling strategy (mixture decomposition) at the second bounce on
the teapot. In Fig. 20, we compute the derivative of a caustic pattern

(b) Our Product Decomposition with MIS(a) BRDF Sampling

Forward Rendering

1.78x1x

0

15

15.58s14.66s

Fig. 22. Product decomposition under global illumination for a glossy
chessboard. Our product decomposition can efficiently estimate the
anisotropic roughness derivative of a chess set modelled by a Beckmann
distribution under one-bounce global illumination (25 ray budget). This
scene has more complex visibility due to inter-occlusions and also some
global illumination effects like glossy reflections of the chess pieces onto the
chessboard; our decomposition handles all these effects better than BRDF
sampling. 3D model courtesy of Turbosquid user Vadim Manoli. Chess posi-
tion is from Magnus Carlsen vs Dommaraju Gukesh at the 11th Norway
Blitz (2023), move 54.

(b) Our Product Decomposition with MIS(a) BRDF Sampling
1x 1.52x

38.55s35s

0

50

Forward Rendering

Fig. 23. Product decomposition under global illumination and very
complex visibility. To stress-test visibility variance (due to inter-occlusions)
we estimate the derivative of an anisotropic metallic hairball (Beckmann
with 𝛼𝑥 = 0.01, 𝛼𝑦 = 0.02, 25 ray budget). Under this challenging condition
too, we still achieve a significant improvement in the standard deviation,
1.52× over regular BRDF sampling due to better handling of sign and shape
variance of the differential BRDF. 3D model courtesy of NVIDIA Research.

formed on a diffuse surface with respect to the isotropic roughness
of a metallic cylinder that produces the caustic. This setup uses the
positivization estimator with a higher branching factor; nonetheless,
it is still able to significantly reduce standard deviation (by 2.51×)
due to correct handling of the BRDF derivative at the second bounce
on the cylinders surface.
We also demonstrate that our estimators work well even in the

presence of more detailed geometry and complicated visibility in
Fig. 21. We estimate the derivative with the mixture weight under

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: February 2024.



Importance Sampling BRDF Derivatives • 15

both direct and one bounce global illumination. Our mixture decom-
position reduces the standard deviation of the estimated gradients
by 2.35× and 2.27× under the two settings respectively as compared
to BRDF importance sampling.

Finally, we show the effectiveness of the product decomposition
under one bounce global illumination with complex visibility, glossy
reflections and other effects intertwined in a single scene in Figs. 22
and 23. In Fig. 22, we estimate the anisotropic roughness derivative
of a chess set modelled by a Beckmann BRDF which includes effects
such as inter-occlusion among the pieces and glossy reflections on
the chessboard. Product decomposition reduces the standard devia-
tion by 1.78× on this scene. In Fig. 23, we consider the case of very
complex visibility. We estimate the anisotropic roughness deriva-
tive of a metallic hairball. Even under this challenging condition,
we are able to better handle sign and shape variance of the differ-
ential BRDF resulting in a 1.52× reduction in standard deviation
over BRDF sampling. We provide difference images which show
the specific regions of improvement for our techniques over BRDF
sampling in Fig. 29. Additionally, we also show the effect of longer
path lengths in Table 3.

Inverse rendering under global illumination. Positivization has the
highest branching factor of our three decompositions. Applying it
at a path vertex which requires a derivative results in the original
path branching out into three sub paths, one of which requires re-
cursive derivative computation. It is conceivable that this added
computation may worsen positivization’s performance as com-
pared to BRDF sampling , since BRDF sampling does not induce
any branching. Experimentally, we have found that despite the addi-
tional branching, positivization is able to reduce variance and better
recover textures under a single bounce of global illumination as
compared to BRDF importance sampling at an equal computation
budget, see Fig. 24. In the setup, we optimize the GGX roughness of
a plate initialized uniformly with 𝛼 = 0.05 to match a target with a
checkerboard pattern with 𝛼 = 0.005, 0.02. Light is incident upon
the plate only indirectly via a reflection off a reflector, also modelled
as a GGX plate with a fixed roughness of 𝛼 = 0.01, see Fig. 24 (b).
The reduced variance due to better handling of the sign and shape
variance by positivization leads to a better recovery of the texture.
This is despite using the ADAM optimizer which ameliorates the
issues of higher variance estimators [Nimier-David et al. 2022].

Our next inverse rendering experiment under global illumination
recovers the anisotropic roughness of a GGX BRDF Fig. 25. The
scene consists of two dragons (𝛼𝑥 = 0.005, 𝛼𝑦 = 0.007) only viewed
indirectly through a glossy reflection. The initialization starts with
𝛼𝑥 = 0.5, 𝛼𝑦 = 0.007 and we optimize for the correct 𝛼𝑥 value. Our
product decomposition is able to better handle the variance of the
differential BRDF at the second bounce (on the dragons surface) ,
which leads to faster convergence.

10 LIMITATIONS AND FUTURE WORK
Determining the number of samples for each decomposed com-

ponent. For all three decompositions, our current implementation
applies a two-sample estimator which uses one sample per compo-
nent. It is possible that a different estimator can be more efficient in
some cases. For example, when the two components have different

(a) Forward Rendering of Target (b) Top View of Scene Setup

Light

Plate with optimizable roughness

Reflector

100 125 150 175 200

3 × 10− 3

4 × 10− 3

5 × 10− 3
BSDF Sampling
Positivization (Ours)

(c) Texture Recovery Loss (L1)
over Iterations

Positivization: 0.00286

BSDF Sampling: 0.00377 

(d) Texture Recovery Absolute Error

0.012

0

Fig. 24. Inverse rendering of the roughness of an isotropic GGX plate
under global illumination. The isotropic GGX plate shown in (a) can only
receive light from the source via a reflector, setup shown in (b). We optimize
the roughness of the GGX plate and find that our positivization is able to
better recover the ground truth checkerboard texture as depicted by the
loss curve (c) and the error in the recovered texture (d). Despite the extra
branching (into three paths) introduced by positivization at the first bounce,
the overall variance is reduced as compared to BRDF sampling (at an equal
compute budget) which leads to a better recovery.

40 60 80 100

10− 1

3 ×10− 2

4 ×10− 2

6 ×10− 2

BSDF Sampling
Product Decomposition (Ours)

(a) Forward Rendering of Target (b) αx Recovery Loss (L1) over Iterations

Our Recovery RenderingInitialization

Fig. 25. Inverse rendering of anisotropic roughness viewed only
through glossy reflection. (a) Our scene consists of glossy reflections of
two dragons 𝛼𝑥 = 0.005, 𝛼𝑦 = 0.007 formed by a metal plate with 𝛼 = 0.001,
all modelled by GGX distributions. We recover 𝛼𝑥 for both the dragons,
starting with an initial value of 𝛼𝑥 = 0.5, see inset for forward rendering of
initialization. (b) Product decomposition (with MIS across the two lobes)
achieves lower recovery error under this setting, the graph shows the sum
of errors for the recovered 𝛼𝑥 for the two dragons. Better handling of the
differential BRDF’s sign and shape variance lets us recover the roughness
values better at an equal compute budget, see our recovery in the inset in
(a). 3D model courtesy of Turbosquid user techunit.

areas (i.e.,
∫
𝜕𝛼 𝑓1 ≠

∫
𝜕𝛼 𝑓2 for components 𝑓1 and 𝑓2), it might be

useful to adjust the number of samples according to the area of the
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component (we show in Appendix C that microfacet normal distribu-
tion functions always have components with equal area). Research
in allocating budgets for multiple importance sampling can likely
help in our case as well [Grittmann et al. 2022; He and Owen 2014;
Sbert et al. 2018]. Our estimator that always samples all components
belongs to the deterministic mixture scheme [Owen 2013]. An alter-
native is a randommixture, which randomly chooses one component.
We opt for deterministic mixtures since they consistently outper-
form random mixtures in our direct lighting experiments (due to
the stratification effect, similar to standard MIS v.s. one-sample MIS).
For global illumination, random mixtures are the same as applying
Russian Roulette to keep only one of the two branches, and can be
more computationally convenient in some cases since they omit the
need for quadratic branching.

Branching and Global Illumination. Our adoption of deterministic
mixtures requires path splitting for global illumination. While the
branching complexity is quadratic instead of exponential (same as a
bidirectional path tracer), it can add undesired overheads. There are
several ways to reduce the branching, 1) deterministically using only
BRDF sampling or using random mixtures instead of deterministic
mixtures after a certain recursion depth, 3) using path reconnection
similar to Zhang et al.’s approach [2020], to reconnect the branches
back to a single primary path. Figuring out an effective strategy to
deal with branching is crucial for applying our method to estimate
derivatives in volumetric rendering and subsurface scattering with
long paths; this is an exciting avenue for future research.

Multiple Parameter Optimization. Prior work [Zeltner et al. 2021]
and ours only deal with estimating the derivative of a single material
parameter (such as roughness, mixture weights, etc.) and constructs
specialized sampling schemes for each of them. However, in inverse
rendering, we are often interested in recovering several parameters
simultaneously. For example, Uber shaders [Burley 2012; Georgiev
et al. 2019] have a large number of tunable parameters. Naively
applying our decompositions for each of these parameters inde-
pendently can lead to very large branching factors. Developing
sampling strategies that efficiently estimate the derivatives of all
the parameters simultaneously is still an open research problem.

Unsupported BRDFs. Our work covers a large variety of popular
analytic surface reflection models, see Table 1. However, our method
currently does not support data driven BRDFs or Neural BRDFs. In
both cases, there are a very large number of tunable parameters, and
it is unclear as to which parameters one might want to differentiate
or importance sample.

Better Optimization Schemes. Ultimately, for inverse rendering,
the optimization is both ill-posed and non-convex. Recently, we have
seen somework [Xing et al. 2022] which takes a step in this direction.
We believe the study of efficient estimators of the derivatives is
largely orthogonal and equally crucial.

11 CONCLUSION
Our importance sampling techniques provide a fundamental com-
ponent for future differentiable rendering work, enabling correct
handling of sign and shape variance of differential BRDFs. BRDF

sampling is widely used in forward rendering to deal with a variety
of light transport phenomena; this includes unidirectional, bidirec-
tional and gradient domain path tracing, Metropolis light transport,
path guiding, photon mapping, etc. Similarly, as the need to deal
with the differentials of more complicated light transport phenom-
ena arises, we will need to develop differential counterparts of these
algorithms and we believe that our method will be well suited to
serve as a fundamental building block for them. Our product and
mixture decompositions can also potentially have use outside of
graphics for importance sampling real-valued functions.
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A BRDF DERIVATIVE IMPORTANCE SAMPLING PDFS
AND CDFS

All PDFs and CDFs are in solid angle coordinates, and do not include
multiplication by sin𝜃 for change of variables to spherical coordi-
nates. PDFs may be defined in either 𝝎𝑖 or 𝝎ℎ space, depending on
the BRDF. The PDFs defined in𝝎ℎ space must finally be transformed
to 𝝎𝑖 space, and while doing so must include the appropriate jaco-
bian 4𝝎𝑜 · 𝝎ℎ . The PDFs are denoted by 𝑝 and their corresponding
CDFs are 𝑃 . In the cases where CDFs are provided instead of inverse
transform sampling routines, CDF inversion is done numerically.

A.1 Positivization
These are all isotropic BRDFs, and sampling for the azimuthal angle
𝜙 is uniform sampling. We introduce PDFs and sampling routines
for Blinn-Phong and Hanrahan-Krueger derivatives that have not
been discussed in past literature to the best of our knowledge.
Importance sampling routines for the derivatives of isotropic

GGX and Beckmann were first introduced by Zeltner et al. [2021] in
Appendix A of their paper, andwe do not repeat them here. However,
they do not provide explicit formulae for the PDFs 𝑝+, 𝑝− that we
need for positivization. These PDFs have a different normalization
by a factor of 2 than the PDF 𝑝 they use, so we define the PDFs
𝑝+, 𝑝− here.

A.1.1 Isotropic GGX.

𝑟 (𝜃ℎ) =
8𝛼2 sec3 𝜃ℎ (tan2 𝜃ℎ − 𝛼2)(

tan2 𝜃ℎ + 𝛼2
)3

𝑝𝛼,− (𝜃ℎ) = −min(𝑟 (𝜃ℎ), 0)
𝑝𝛼,+ (𝜃ℎ) = max(𝑟 (𝜃ℎ), 0)

(24)

A.1.2 Isotropic Beckmann.

𝑟 (𝜃ℎ) =
4𝑒1−𝑡𝑎𝑛

2𝜃ℎ/𝛼2
sec3 𝜃ℎ (tan2 𝜃ℎ − 𝛼2)
𝛼4

𝑝𝛼,− (𝜃ℎ) = −min(𝑟 (𝜃ℎ), 0)
𝑝𝛼,+ (𝜃ℎ) = max(𝑟 (𝜃ℎ), 0)

(25)

A.1.3 Blinn-Phong (Minnaert).

𝑟 (𝜃ℎ) = 𝑒 (𝑛 + 2) cos𝑛+1 𝜃ℎ ((𝑛 + 2) log cos𝜃ℎ + 1)
𝑝𝑛,− (𝜃ℎ) = −min(𝑟 (𝜃ℎ), 0)
𝑝𝑛,+ (𝜃ℎ) = max(𝑟 (𝜃ℎ), 0)
𝑃𝑛,+ (𝜃ℎ) = −𝑒 (𝑛 + 2) cos𝑛+2 𝜃ℎ log cos𝜃ℎ
𝑃𝑛,− (𝜃ℎ) = 1 − 𝑒 (𝑛 + 2) cos𝑛+2 𝜃ℎ log cos𝜃ℎ

(26)

For the Minnaert BRDF, the sampling routines are the same as above,
but defined in 𝜃𝑖 space instead of 𝜃ℎ .

A.1.4 Henyey-Greenstein (Hanrahan-Krueger).

𝐶 =
33/2𝑔2 (1 − 𝑔2)

(3 + 𝑔2)3/2 − 33/2 (1 − 𝑔2)

𝑟 (𝜃𝑖 ) = 𝐶𝑔2
(𝑔2 + 3) cos𝜃𝑖 + 𝑔(𝑔2 − 5)
(𝑔2 − 2𝑔 cos𝜃𝑖 + 1)5/2

𝑝𝑔,− (𝜃𝑖 ) = −min(𝑟 (𝜃𝑖 ), 0)
𝑝𝑔,+ (𝜃𝑖 ) = max(𝑟 (𝜃𝑖 ), 0)

𝑃𝑔,− (𝜃𝑖 ) =
(1 −𝐶) −𝐶

[
3𝑔2+1−𝑔 (𝑔2+3) cos𝜃𝑖
(𝑔2−2𝑔 cos𝜃𝑖+1)3/2

]
, if 𝑝𝑔,− (𝜃𝑖 ) > 0

1, otherwise

𝑃𝑔,+ (𝜃𝑖 ) =
𝐶

[
3𝑔2+1−𝑔 (𝑔2+3) cos𝜃𝑖
(𝑔2−2𝑔 cos𝜃𝑖+1)3/2

]
− 1, if 𝑝𝑔,+ (𝜃𝑖 ) > 0

1, otherwise
(27)

A.2 Product Decomposition
For product decomposition, there are two sampling PDFs. The first
is 𝑝1 ∝ 𝑔, which is just regular BRDF sampling (e.g. visible normal
distribution function sampling for GGX/ Beckmann); we do not
repeat them here. We provide importance sampling PDFs and CDFs
for 𝜕𝛼𝑔.
For Anisotropic GGX and Beckmann, we provide the PDFs and

importance sampling routines for 𝜕𝛼𝑥𝑔 with one of the directional
parameters 𝛼𝑥 . The corresponding PDFs and CDFs for the other
directional parameter 𝛼𝑦 can be obtained by swapping 𝛼𝑥 with 𝛼𝑦
and cos𝜙ℎ with sin𝜙ℎ . We do the same for Ashikhmin-Shirley too,
except the directional parameters are 𝑛𝑢 , 𝑛𝑣 in this case.

For the three BRDFs above, the CDF for𝜙ℎ generates an azimuthal
angle in the range [0, 𝜋/2]. 𝜙ℎ is mirror symmetric about 𝜋/2 and
has a period of 𝜋 , which is used to transform 𝜙ℎ to the range [0, 2𝜋]
(and the jacobian needs to account for this via a division by 4 as
well). The CDF for 𝜃ℎ generates an elevation angle in [0, 𝜋/2].

A.2.1 Anisotropic GGX. Derivative with 𝛼𝑥 .

𝑎(𝜙ℎ) =
cos2 𝜙ℎ
𝛼2𝑥

+ sin2 𝜙ℎ
𝛼2𝑦

𝑔(𝜃ℎ, 𝜙ℎ) =
(
𝑎(𝜙ℎ) sin2 𝜃ℎ + cos2 𝜃ℎ

)−2
𝑝𝛼𝑥 (𝜙ℎ) =

4 cos2 𝜙ℎ
𝜋𝛼3𝑥𝛼𝑦𝑎(𝜙ℎ)2

𝑝𝛼𝑥 (𝜃ℎ |𝜙ℎ) =
4𝑎(𝜙ℎ)2 tan2 𝜃ℎ sec3 𝜃ℎ(

tan2 𝜃ℎ𝑎(𝜙ℎ) + 1
)3

𝑃𝛼𝑥 (𝜙ℎ) =
2
𝜋

[
tan−1

(
𝛼𝑥

𝛼𝑦
tan𝜙ℎ

)
+

𝛼𝑦𝛼𝑥 sin(2𝜙ℎ)
𝛼2𝑥 + 𝛼2𝑦 + (𝛼2𝑦 − 𝛼2𝑥 ) cos(2𝜙ℎ)

]
𝑃𝛼𝑥 (𝜃ℎ |𝜙ℎ) =

𝑎(𝜙ℎ)2

𝑎(𝜙ℎ)2 − 1

− 𝑎(𝜙ℎ)2 ((1 − 𝑎(𝜙ℎ)) cos(4𝜃ℎ) + 𝑎(𝜙ℎ) + 3)
4(𝑎(𝜙ℎ)2 − 1)

(
(𝑎(𝜙ℎ) − 1) sin2 𝜃ℎ + 1

)2

(28)
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A.2.2 Anisotropic Beckmann (Ward). Derivative with 𝛼𝑥 .
The importance sampling PDFs and CDFs for the anisotropic Beck-
mann and Ward BRDFs are the same since the shape functions 𝑔 for
both the BRDFs (and their derivatives) take on a similar functional
form. The PDF 𝑝𝛼𝑥 (𝜙ℎ) and CDF 𝑃𝛼𝑥 (𝜙ℎ) for them is the same as
GGX, see Eqn. (28). Also see Eqn. (28) for the definition of 𝑎(𝜙ℎ).

𝑔(𝜃ℎ, 𝜙ℎ) = sec3 𝜃ℎ𝑒−𝑎 (𝜙ℎ ) tan2 𝜃ℎ

𝑝𝛼𝑥 (𝜃ℎ |𝜙ℎ) = 2𝑎(𝜙ℎ)2 tan2 𝜃ℎ sec3 𝜃ℎ𝑒−𝑎 (𝜙ℎ ) tan2 𝜃ℎ

𝑃𝛼𝑥 (𝜃ℎ |𝜙ℎ) = 1 − (1 + 𝑎(𝜙ℎ) tan2 𝜃ℎ)𝑒−𝑎 (𝜙ℎ ) tan2 𝜃ℎ

(29)

A.2.3 Ashikhmin-Shirley. Derivative with 𝑛𝑢 .

𝑎(𝜙ℎ) = 𝑛𝑢 cos2 𝜙ℎ + 𝑛𝑣 sin2 𝜙ℎ
𝑔(𝜃ℎ, 𝜙ℎ) = cos𝜃𝑎 (𝜙ℎ )

ℎ

𝑝𝑛𝑢 (𝜙ℎ) =
4(𝑛𝑢 + 1)3/2

√
𝑛𝑣 + 1 cos2 𝜙ℎ

𝜋 (1 + 𝑎(𝜙ℎ))2

𝑝𝑛𝑢 (𝜃ℎ |𝜙ℎ) = − log cos𝜃ℎ (1 + 𝑎(𝜙ℎ))2 cos𝜃
𝑎 (𝜙ℎ )
ℎ

𝑃𝑛𝑢 (𝜙ℎ) =
2
𝜋

[
tan−1

(√︂
𝑛𝑣 + 1
𝑛𝑢 + 1

tan𝜙ℎ

)
+

√︁
(𝑛𝑢 + 1) (𝑛𝑣 + 1) sin(2𝜙ℎ)

𝑛𝑢 + 𝑛𝑣 + 2 + (𝑛𝑢 − 𝑛𝑣) cos(2𝜙ℎ)

]
𝑃𝑛𝑢 (𝜃ℎ |𝜙ℎ) = 1 − (1 − (𝑎(𝜙ℎ) + 1) log cos𝜃ℎ) cos𝜃

𝑎 (𝜙ℎ )+1
ℎ

(30)

A.2.4 Microfacet ABC. The ABC Microfacet BRDF is an isotropic
microfacet BRDF, and so the sampling for 𝜙ℎ is uniform. The param-
eter𝐴 does not play a role in the microfacet BRDF (it is canceled out
by the normalization constant), so we ignore it, and only consider
the derivatives with the parameters 𝐵,𝐶 .

𝑔(𝜃ℎ) = (1 + 𝐵(1 − 𝑐𝑜𝑠 (𝜃ℎ)))−𝐶

𝑝𝐵 (𝜃ℎ) =
𝐵2𝐶 (𝐶 − 1) (𝐵 + 1)𝐶 (cos𝜃ℎ − 1) (1 + 𝐵(1 − cos𝜃ℎ))−1−𝐶

(1 + 𝐵𝐶 − (𝐵 + 1)𝐶 )

𝑝𝐶 (𝜃ℎ) =
𝐵(𝐶 − 1)2

1 − (1 + 𝐵)1−𝐶 ((𝐶 − 1) log(𝐵 + 1) + 1)
log(1 + 𝐵(1 − cos𝜃ℎ))
(1 + 𝐵(1 − cos𝜃ℎ))𝐶

𝑃𝐵 (𝜃ℎ) =
(𝐵 + 1)𝐶 (1 + 𝐵(1 − cos𝜃ℎ))−𝐶 (1 + 𝐵𝐶 (1 − cos𝜃ℎ)) − (𝐵 + 1)𝐶

(1 + 𝐵𝐶 − (𝐵 + 1)𝐶 )

𝑃𝐶 (𝜃ℎ) =
1 − (1 + 𝐵(1 − cos𝜃ℎ))1−𝐶 ((𝐶 − 1) log(1 + 𝐵(1 − cos𝜃ℎ)) + 1)

1 − (𝐵 + 1)1−𝐶 ((𝐶 − 1) log(1 + 𝐵) + 1)
(31)

A.2.5 Hemi-EPD. TheHemi-EPDmicrofacet BRDF is another isotropic
BRDF, so 𝜙ℎ is importance sampled using uniform sampling. Γ is
the incomplete gamma function.

𝑔(𝜃ℎ) = 𝑒𝜅 cos𝛾 𝜃ℎ − 1

𝑝𝜅 (𝜃ℎ) =
𝛾𝜅 (−𝜅)1/𝛾

Γ(1 + 1/𝛾, 0) − Γ(1 + 1/𝛾,−𝜅)) cos
𝛾 (𝜃ℎ)𝑒𝜅 cos𝛾 𝜃ℎ

𝑃𝜅 (𝜃ℎ) =
Γ(1 + 1/𝛾,−𝜅 cos𝛾 𝜃ℎ) − Γ(1 + 1/𝛾,−𝜅)

Γ(1 + 1/𝛾, 0) − Γ(1 + 1/𝛾,−𝜅))

(32)

A.2.6 Burley Diffuse BSSRDF. This BSSRDF is defined over an infi-
nite plane, and is radially symmetric. The polar angle 𝜙 is sampled
uniformly. We provide an importance sampling routine to sample
the radial distance 𝑟 ∈ [0,∞], for the derivative with the parameter
𝑑 that controls both its height and width. Once again, a jacobian for
multiplication with 𝑟 is required here.

𝑔(𝑟, 𝑑) = 𝑒−𝑟/𝑑 + 𝑒−𝑟/3𝑑

𝑟

𝑝𝑑 (𝑟 ) =
𝑒−𝑟/𝑑 + 𝑒−𝑟/3𝑑/3

4𝑑2

𝑃𝑑 (𝑟 ) = 1 − 𝑒−𝑟/𝑑 (𝑟 + 𝑑)
4𝑑

− 𝑒−𝑟/3𝑑 (3𝑑 + 𝑟 )
4𝑑

(33)

A.3 Mixture Decomposition
A.3.1 Mixture Model. We are interested in differentiating a mixture
model 𝑓 , given by

𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝑤𝑓1 (𝝎𝑖 ,𝝎𝑜 ) + (1 −𝑤) 𝑓2 (𝝎𝑖 ,𝝎𝑜 )
𝜕𝑤 𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝑓1 (𝝎𝑖 ,𝝎𝑜 ) − 𝑓2 (𝝎𝑖 ,𝝎𝑜 ),

(34)

with its parameter𝑤 . Here, 𝑓 1 and 𝑓 2 are the two lobes of the BRDF.
The importance sampling scheme for the two terms of the derivative
𝜕𝑤 𝑓 are simply the BRDF importance sampling techniques for 𝑓1
and 𝑓2 respectively.

A.3.2 Oren-Nayar. We are interested in differentiating the rough-
ness 𝜎 . The PDFs once again are in solid angle coordinates, not
in spherical coordinates. The first term of Eqn. (20) requires stan-
dard cosine hemispherical sampling and we provide an importance
sampling routine for the second term. Here, 𝑝2 (𝜃𝑖 ) is made up of
two terms depending on whether 𝜃𝑖 < 𝜃𝑜 , and they have weights
𝐴

′
21, 1−𝐴

′
21 respectively. For𝜙𝑖 , an exact inverse transform sampling

routine is available.

𝐴21 =
1
2
sin(𝜃𝑜 ) (𝜃𝑜 − sin(𝜃𝑜 ) cos(𝜃𝑜 ))

𝐴22 =
1
3
tan(𝜃𝑜 ) (1 − sin3 (𝜃𝑜 ))

𝑇2 = 𝐴21 +𝐴22, 𝐴
′
21 = 𝐴21/𝑇2,

𝑝2 (𝜃𝑖 ) =

𝐴

′
21

sin(𝜃𝑖 )
(0.5(𝜃𝑜−sin(𝜃𝑜 ) cos(𝜃𝑜 ) ) ) , if 𝜃𝑖 < 𝜃𝑜

(1 −𝐴
′
21)

3 sin(𝜃𝑖 ) cos(𝜃𝑖 )
1−sin3 (𝜃𝑜 )

, otherwise

𝑝2 (𝜙𝑖 ) = 0.5max(0, cos(𝜙𝑜 − 𝜙𝑖 ))

𝑃2 (𝜃𝑖 ) =

𝐴

′
21

𝜃𝑖−𝑠𝑖𝑛 (𝜃𝑖 )𝑐𝑜𝑠 (𝜃𝑖 )
𝜃𝑜−𝑠𝑖𝑛 (𝜃𝑜 )𝑐𝑜𝑠 (𝜃𝑜 ) , if 𝜃𝑖 < 𝜃𝑜

𝐴
′
21 + (1 −𝐴

′
21)

sin3 (𝜃𝑖 )−𝑠𝑖𝑛3 (𝜃𝑜 )
1.0−𝑠𝑖𝑛3 (𝜃𝑜 ) , otherwise

𝜙𝑖 =

{
𝜙𝑜 − 𝑠𝑖𝑛−1 (2𝑢), if 𝑢 < 0.5
𝜙𝑜 + 𝑠𝑖𝑛−1 (2𝑢 − 1), otherwise

(35)

A.3.3 Microcylinder. We want to importance sample the derivative
of the BRDF corresponding to the volumetric scattering component
𝑓𝑟,𝑣 in the original paper’s notation, with the linear combination
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weight 𝑘𝑑 . This BRDF does not include cosine foreshortening.

𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝐹
(1 − 𝑘𝑑 )𝑔(𝜃ℎ ;𝛾𝑣) + 𝑘𝑑

cos𝜃𝑖 + cos𝜃𝑜
𝐴

𝜕𝑘𝑑 𝑓 (𝝎𝑖 ,𝝎𝑜 ) = 𝐹
1

cos𝜃𝑖 + cos𝜃𝑜
𝐴 − 𝐹

𝑔(𝛾𝑣, 𝜃ℎ)
cos𝜃𝑖 + cos𝜃𝑜

𝐴,

(36)

where F is the Fresnel term, A is the albedo, and 𝑔 is a Gaussian
with width 𝛾𝑣 . The first term is importance sampled using cosine
hemispherical sampling, which is also the importance sampling
technique used for this BRDF in forward rendering. The second
term is importance sampled using inverse transform sampling for
the Gaussian.

B ZELTNER ET AL.’S ANTITHETIC SAMPLING IS A
SPECIAL CASE OF POSITIVIZATION

Zeltner et al.’s [2021] antithetic sampling involves generating paired
and correlated samples for the positive and negative lobes of the
BRDF derivative 𝜕𝛼 𝑓 in two separate passes, one pass for each lobe,
and then averages out the final result.
The correlation is induced by using the same random number

generator state across the two passes. The only difference between
the two passes are that the first one uses a flag to trigger sam-
pling from the positive lobe 𝑝+ of the PDF 𝑝 = 𝑤𝑝+ + (1 −𝑤)𝑝− ,
and the second one triggers sampling from the negative lobe 𝑝− .
Here, 𝑤 is the relative area of the positive lobe of 𝜕𝛼 𝑓 , given by
|
∫
𝜕𝛼 𝑓+ |/( |

∫
𝜕𝛼 𝑓+ | + |

∫
𝜕𝛼 𝑓− |) and is equal to 0.5 for the BRDF

derivatives they consider, see Appendix Sec. C.
Their estimator for the integrand 𝜕𝛼 𝑓 is given by,

𝐼 =
1
2

(
𝜕𝛼 𝑓 (𝑋+)
𝑝 (𝑋+)

+ 𝜕𝛼 𝑓 (𝑋−)
𝑝 (𝑋−)

)
, (37)

where the samples are drawn from 𝑋+ ∼ 𝑝+ and 𝑋− ∼ 𝑝− , and the
factor of 1/2 comes from the fact that they average the result of the
two passes. We can further simplify Eqn. (37), to bring it in a form
similar to the positivization estimator in Eqn. (8), by noticing that
𝜕𝛼 𝑓 (𝑋 ) = 𝜕𝛼 𝑓+ (𝑋 ) when 𝑋 ∼ 𝑝+ and similarly for 𝑝− too, which
gives us

𝐼 =
𝜕𝛼 𝑓+ (𝑋+ (𝑢))
𝑝+ (𝑋+ (𝑢))

+ 𝜕𝛼 𝑓− (𝑋− (𝑢))
𝑝− (𝑋− (𝑢))

. (38)

The only difference between the estimator above and the positiviza-
tion estimator is that the samples 𝑋− (𝑢) and 𝑋+ (𝑢) are correlated
because they use the same uniform random number𝑢, whereas they
are uncorrelated for positivization because positivization does not
impose any such restriction. Thus, antithetic sampling is a special
case of positivization with correlated random numbers.
Positivization (with uncorrelated random numbers) achieves its

variance reduction due to the stratification of the real-valued func-
tion into positive and negative functions, and we have experimen-
tally verified that antithetic sampling (with correlated random num-
bers) consistently has similar variance reduction as positivization.
As a result, antithetic sampling’s variance reduction can be explained
by the implicit stratification of 𝜕𝛼 𝑓 into positive and negative lobes.
See Fig. 3 for an example of the variance reduction.

Zhang et al.’s Antithetic Sampling

0.71x
5.99s

0

8

0

30

Fig. 26. Additional Comparisons of Zhang et al. [2021a]. with BRDF
Sampling for Figs. 10 and 12. Zhang et al. propose a method to estimate
an odd derivative of the GGX BRDFs (the derivative with the half vector) by
using antithetic sampling. However, their method is not directly applicable to
many BRDF derivatives which can often be even functions. Take for example,
the isotropic or anisotropic roughness derivative of a GGX BRDF. Applying
an estimator tailored to odd integrands to an even integrand naturally leads
to estimates with higher variance than the base sampling technique (BRDF
sampling). We see this in the figure above as the variance is increased in
both scenes (inset numbers are less than 1) as compared to BRDF sampling.
Our product decomposition performs better than BRDF sampling; thus, it
also outperforms Zhang et al.

C MICROFACET BRDF DERIVATIVES INTEGRATE TO
ZERO

Previous work [Zeltner et al. 2021] has noted that the derivative of
the normal distribution function of the isotropic GGX (and Beck-
mann) BRDF with its roughness parameter has positive and negative
lobes with equal area. Here, we prove that this observation extends
to all the derivatives of all microfacet normal distribution functions.
The projected area of a microfacet BRDF’s normal distribution

function 𝐷 always integrates to 1 i.e a constant,∫
𝐷 (𝝎ℎ, 𝛼) cos𝜃ℎd𝝎ℎ = 1 (39)

As a result, its derivative with any parameter 𝛼 integrates to 0,∫
𝜕𝛼𝐷 (𝝎ℎ, 𝛼) cos𝜃ℎd𝝎ℎ = 0 (40)

which means that the positive and negative lobes of 𝜕𝛼𝐷 cos𝜃ℎ have
equal area. Since we generally construct microfacet derivative sam-
pling PDFs proportional to the derivative of the projected normal
distribution function, the sampling PDFs (irrespective of the decom-
position) for the positive and negative lobes of the derivative must
necessarily have equal area.

D ADDITIONAL RESULTS
We present some additional comparisons and results in this sec-
tion. First, we apply Zhang et al.’s [2021a] method to estimating
the anisotropic roughness derivative of GGX BRDFs of the scenes
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Table 3. Derivative Estimation Comparison under 3 bounce Global Il-
lumination i.e. depth=5. The scenes are Figs. 21 to 23, respectively. The
numbers indicate standard deviation improvement (higher is better) for
our decompositions over BRDF sampling. As the maximum length of light
paths increases (depth=3 vs depth=5), applying our decompositions at each
path vertex is less effective due to extra branching. Figuring out which path
vertices one should perform the decomposition at (or path reconnection
after splitting) will likely ameliorate these issues, and is an exciting area
for future research in differentiable rendering; Section 10 discusses this
in further detail. Nonetheless, even with splitting at each path vertex, our
estimators show improvement over BRDF sampling at depth=5; Azinović et
al. [2019] argue that depth=4 is sufficient for inverse recovery of materials
and lighting under diffuse global illumination.

Scene House Chessboard Hairball

Improvement (depth=3) 2.27× 1.78× 1.52×
Improvement (depth=5) 1.87× 1.55× 1.1×

BRDF Sampling Recovery Product Decomposition Recovery

Relative Absolute Error of Recovery

BRDF Error:
0.5563 

Our Prod Error:
0.4326

αy αy

αy

αx αx

αx

BRDF Error:
0.5710

0.05

0.01

Our Prod Error:
0.4451

0.05

0.01

2.0

0

Fig. 27. Texture recovery comparison for Fig. 15. Product decomposition
is able to better recover textures due to its lower variance, this is especially
noticeable in the highly specular regions (with low roughness values). It is
hard to visually compare the differences between recovered textures, since
they are often subtle. However, product decomposition’s lower variance
leads to a smoother texture recovery (see bottom row) and lower error.

0

0.08

Texture Recovery Absolute Error

BRDF Sampling SGDm: 0.0693Positivization (Ours) SGDm: 0.0454

Fig. 28. Inverse Rendering of the scattering parameter 𝑔 of a Hanrahan-
Krueger BRDF with SGDm. Using stochastic gradient descent with mo-
mentum (SGDm) instead of ADAM exposes the higher variance of BRDF
sampling as compared to positivization in the form of higher inverse ren-
dering error in the recovered texture. The recovered texture with the ADAM
optimizer is shown in Fig. 14.

depicted Figs. 10, 12 and 13 in Fig. 26. Second, we show the recov-
ered textures using the SGDm optimizer in the experiment outlined
in Fig. 14 in Fig. 28. Third, we show the recovered textures by both
our method and BRDF sampling in Fig. 15 in Fig. 27 Next, we show
the improvement regions of our estimators vs BRDF sampling for
all the standard deviation estimation experiments in Fig. 29. Finally,
we discuss the effect of larger path lengths in Table 3.
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Fig. 29. Improvement Regions for Derivative Estimation. For each of the standard deviation images for derivatives estimators in Figs. 10 to 13 and 18
to 23, we compute the difference between the standard deviation of BRDF sampling and our techniques (positivization/ product decomposition/ mixture
decomposition). Positive numbers indicate regions (shown in red) where our estimators have better performance (i.e. lower standard deviation) than
BRDF sampling. Negative numbers indicate regions (shown in blue) where our estimators have worse performance. As it can be seen, we are better almost
everywhere across all experiments.
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