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Importance Sampling BRDF Derivatives
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Standard deviation of derivative estimators: BRDF Importance Sampling (top le! diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bo"om right diagonal). Numbers indicate improvement in gradient estimation, higher is be!er. 

Our Pos 1.96x Our Pos 58.57x Our Prod 1.56x Our Prod 3.61x Our Mix 3.91x Our Mix 4.72x

BRDF 1x BRDF 1x BRDF 1x BRDF 1x BRDF 1x BRDF 1x

Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red). 
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Variance reduction in differentiable rendering by correctly handling the derivative’s sign
Standard deviation of derivative estimators: BRDF Importance Sampling (top le! diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bo"om right diagonal). Numbers indicate improvement in gradient estimation, higher is be!er. 

Our Pos 1.96x Our Pos 58.57x Our Prod 1.56x Our Prod 3.61x Our Mix 3.91x Our Mix 4.72x
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Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red). 
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Inverse rendering via derivatives of images 
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3D scene:

triangle positions


camera pose

materials


…

image

target

∇ loss

update

slide credit: Tzu-Mao Li



BRDF importance sampling is important in forward rendering
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Uniform Sampling BRDF Importance Sampling

image credit: PBRT - Pharr, Jakob and Humphreys
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Goal: low-variance importance sampling of BRDF derivatives
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Goal: low-variance importance sampling of BRDF derivatives

Standard deviation of derivative estimators: BRDF Importance Sampling (top le! diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bo"om right diagonal). Numbers indicate improvement in gradient estimation, higher is be!er. 
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Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red). 
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Goal: low-variance importance sampling of BRDF derivatives

Standard deviation of derivative estimators: BRDF Importance Sampling (top le! diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bo"om right diagonal). Numbers indicate improvement in gradient estimation, higher is be!er. 
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Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red). 
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What do BRDF derivatives look like?
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500 samples per pixel



BRDF derivatives can take both positive and negative values
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BRDF derivatives can take both positive and negative values
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10,000 samples per pixel



BRDF derivatives can be very noisy
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100 samples per pixel
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Importance sampling PDF (p)        BRDF (g)∝
g



Importance sampling PDF (p)        BRDF (g)
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Importance sampling PDF (p)        BRDF (g)∝



Same PDF to importance sample BRDF derivative?
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BRDF      is very different from its derivative 
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Zeltner et al: Monte Carlo Estimators for Differential Light Transport
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f
p

We can construct p      |f|?∝



p      |f| has sign variance
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Key Idea: decompose real-valued into sum of positive and negative
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f

precisely the decomposition is non-negative and non-positive



Key Idea: decompose real-valued into sum of positive and negative
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Positivization — Owen and Zhou 2000.
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Positivization — Owen and Zhou 2000.
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Positivization — Owen and Zhou 2000.
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Positivization reduces variance by 58x!
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Forward rendering Variance



Positivization is applicable to several BRDF derivatives

• Roughness of isotropic GGX, Beckmann 

• Exponent of Blinn-Phong 

• Scattering parameter of Hanrahan-Krueger BRDF
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Positivization requires analytic root locations
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Positivization requires analytic integrability
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f −(θ, ϕ)

∫c− =

c−p−(θ, ϕ) = f −(θ, ϕ)
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No analytic root locations — no positivization :(
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No analytic integrability — no positivization :(

f −(θ, ϕ)

∫c− =



Positivization is inapplicable to several BRDF derivatives :(
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• Directional roughness of anisotropic Beckmann and GGX 

• Directional exponent of Ashikhmin-Shirley 

• Width of Burley’s BSSRDF 

• Weights of mixture BRDFs


• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)


• Oren-Nayar 

• Microcylinder BRDF 

• and many others… 



Our product and mixture decomposition can handle these!
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• Directional roughness of anisotropic Beckmann and GGX 

• Directional exponent of Ashikhmin-Shirley 

• Width of Burley’s BSSRDF 

• Weights of mixture BRDFs


• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)


• Oren-Nayar 

• Microcylinder BRDF 

• and many others… 

Product decomposition

Mixture decomposition



Key idea: let positive and negative parts 
overlap!
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Recall: Positivization has non-overlapping support
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A decomposition with overlapping support
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Another decomposition with overlapping support
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g = βgs + (1 − β)gd

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

f

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

f

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

f

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

f

−gd

gs

Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd
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Our Mixture Decomposition
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g = βgs + (1 − β)gd

∂βg = f = gs − gd

f

−gd

gs
ps

pd

+=

Our Mixture Decomposition



Mixture decomposition reduces variance of glossy reflections 
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(a) BRDF Sampling (b) Our Mixture Decomposition w/ MIS

Forward Rendering

0

1



Mixture decomposition improves inverse rendering
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• Weights of mixture BRDFs


• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)


• Oren-Nayar 

• Microcylinder BRDF 

• and many others… Our mixture decomposition



Our product decomposition
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g(x; α) = (2πα)−1 ⋅ e− x2
2α2

normalization: n

(2πα)−1 e− x2
2α2

shape: h
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∂αg = ∂α(n ⋅ h) = f

Our product decomposition

n h
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f = n ⋅ ∂αh +∂αn ⋅ h

Our product decomposition



Product decomposition of anisotropic GGX derivative
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Product decomposition under global illumination
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(b) Our Product Decomposition with MIS(a) BRDF Sampling
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Product decomposition improves inverse rendering
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BSDF Sampling
Product Decomposition (Ours)

(a) Forward Rendering of Target (b) αx Recovery Loss (L1) over Iterations

Our Recovery RenderingInitialization
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• Directional roughness of anisotropic Beckmann and GGX 

• Directional exponent of Ashikhmin-Shirley 

• Width of Burley’s BSSRDF Our product decomposition
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We now have good importance sampling techniques for BRDF in 
differentiable rendering


