Importance Sampling BRDF Derivatives

Isotropic GGX

Hanrahan-Krueger

Variance reduction in differentiable rendering by correctly handling the derivative's sign

Yash Belhe, Bing Xu, Sai Praveen Bangaru^{*}, Ravi Ramamoorthi, Tzu-Mao Li – UCSD (*MIT)

Anisotropic GGX

Anisotropic Beckmann

Oren-Nayar

Mixture Model

Inverse rendering via derivatives of images

update

3D scene: triangle positions camera pose materials

target

slide credit: Tzu-Mao Li

BRDF importance sampling is important in forward rendering

Uniform Sampling

BRDF Importance Sampling

³ image credit: PBRT - Pharr, Jakob and Humphreys

Goal: low-variance importance sampling of BRDF derivatives

Goal: low-variance importance sampling of BRDF derivatives

Isotropic GGX

Hanrahan-Krueger

Anisotropic GGX

Anisotropic Beckmann

Oren-Nayar

Mixture Model

Goal: low-variance importance sampling of BRDF derivatives

Direct Illumination

Glossy Reflection

Complex Visibility

Caustics

What do BRDF derivatives look like?

BRDF derivatives can be very noisy

100 samples per pixel

Importance sampling PDF (p) CX BRDF (g)

Importance sampling PDF (p) CX BRDF (g)

Importance sampling PDF (p) CX BRDF (g)

Same PDF to importance sample BRDF derivative?

BRDF g is very different from its derivative f

Zeltner et al: Monte Carlo Estimators for Differential Light Transport

We can construct p c f?

p c |f | has sign variance

Key Idea: decompose real-valued into sum of positive and negative

18 precisely the decomposition is non-negative and non-positive

Key Idea: decompose real-valued into sum of positive and negative

Positivization reduces variance by 58x! BRDF 1x

Forward rendering

Variance

Positivization is applicable to several BRDF derivatives

- Roughness of isotropic **GGX**, **Beckmann**
- Exponent of Blinn-Phong
- Scattering parameter of Hanrahan-Krueger BRDF

Positivization requires analytic root locations

Positivization requires analytic integrability

 $c^{-}p^{-}(\theta,\phi) = f^{-}(\theta,\phi)$

No analytic root locations — no positivization :(

No analytic integrability — no positivization :(

 $f^{-}(\theta, \phi)$

Positivization is inapplicable to several BRDF derivatives :(

- Directional roughness of anisotropic Beckmann and GGX
- Directional exponent of Ashikhmin-Shirley
- Width of Burley's BSSRDF
- Weights of mixture BRDFs

 - **Oren-Nayar** lacksquare
 - Microcylinder BRDF
- and many others...

• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)

Our product and mixture decomposition can handle these!

- Directional roughness of anisotropic **Beckmann and GGX**
- Directional exponent of **Ashikhmin-Shirley**
- Width of **Burley's BSSRDF**
- Weights of mixture BRDFs

 - **Oren-Nayar**
 - **Microcylinder BRDF** \bullet
- and many others...

Product decomposition

• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)

Mixture decomposition

Key idea: let positive and negative parts overlap!

Recall: Positivization has non-overlapping support

A decomposition with overlapping support

Another decomposition with overlapping support

$g = \beta g_s + (1 - \beta) g_d$

 $\partial_{\beta}g = f = g_s - g_d$

$g = \beta g_s + (1 - \beta) g_d$

Our Mixture Decomposition $g = \beta g_s + (1 - \beta) g_d$

$\partial_{\beta}g = f = g_s - g_d$

Our Mixture Decomposition $g = \beta g_s + (1 - \beta)g_d$ $\partial_{\beta}g = f = g_s - g_d$ g_s

 $\boldsymbol{\varrho}_{\mathcal{A}}$

$g = \beta g_s + (1 - \beta)g_d$

$g = \beta g_s + (1 - \beta)g_d$

Mixture decomposition reduces variance of glossy reflections Forward Rendering

(b) Our Mixture Decomposition w/ MIS

(a) BRDF Sampling

\bigcirc		
	_	

Mixture decomposition improves inverse rendering

- Weights of mixture BRDFs

 - **Oren-Nayar** lacksquare
 - **Microcylinder BRDF**
- and many others...

• All layered BRDFs (Disney Principled, Autodesk Standard Surface, etc.)

Our mixture decomposition

 $\partial_{\alpha}g = \partial_{\alpha}(n \cdot h) = f$ 47

Product decomposition of anisotropic GGX derivative

n

$$\cdot \partial_{\alpha}h$$

$$\partial_{\alpha}n\cdot h$$

Product decomposition under global illumination

(a) BRDF Sampling

Forward Rendering **15.58s 1.78x**

(b) Our Product Decomposition with MIS

Product decomposition improves inverse rendering

(a) Forward Rendering of Target

Initialization

Our Recovery Rendering

(b) α_x Recovery Loss (L1) over Iterations

- Directional roughness of anisotropic Beckmann and GGX
- Directional exponent of Ashikhmin-Shirley
- Width of **Burley's BSSRDF**

We now have good importance sampling techniques for BRDF in differentiable rendering